
BENCHCOUNCILTM AISYS-IQ

STANDARD SPECIFICATION

VERSION 1.0

AUGUST, 2024

International Open Benchmark Council (BenchCouncil)
http://www.benchcouncil.org
benchcouncil@gmail.com

http://www.benchcouncil.org/aisys-iq

©2024 INTERNATIONAL OPEN BENCHMARK COUNCIL

ALL RIGHTS RESERVED

Acknowledgements

The BenchCouncil acknowledges the substantial contribution of AISys-IQ proposal principal submit-
ters: Institute of Computing Technology (ICT), Chinese Academy of Sciences(CAS), and QiYuan Lab,
and the proposal reviewer BenchCouncil AI committee.

AISys-IQ Proposal Principal Submitter: Institute of Computing Technology, Chinese Academy of
Sciences

AISys-IQ Proposal Reviewer: BenchCouncil AI Committee

Contact: benchcouncil@gmail.com (BenchCouncil)

Trademarks

BenchCouncil, BenchCouncil Benchmark and BenchCouncil AISys-IQ are trademarks of International
Open Benchmark Council.

1

BenchCouncil Membership

(as of August 2024)

Full Members

Associate Members

2

Document Revision History

Date Version Description
20 July 2024 Draft 1.0 Mail ballot version
22 August 2024 Version 1.0 Revision version (proposed standard)

3

Contents

1 Introduction 5

2 Terminology and Background 5
2.1 Terminology . 5
2.2 Background . 6

3 AISys-IQ Evaluatology 7
3.1 Background of Evaluatology . 7
3.2 AISys-IQ Evaluatology . 7

3.2.1 Stakeholders’ Evaluation Requirements . 9
3.2.2 Algorithm IQ Evaluatology . 9
3.2.3 System IQ Evaluatology . 9
3.2.4 Evaluation Outcomes - IQ . 10

4 Design 10
4.1 System under Test . 10

4.1.1 AI Algorithm IQ System under Test . 10
4.1.2 AI System IQ System under Test . 11

4.2 Life of Running a Workload . 13
4.2.1 AI Algorithm IQ Evaluation . 13
4.2.2 AI System IQ Evaluation . 13

4.3 AISys-IQ Problem Domains . 13
4.3.1 Problem Domains for AI Algorithm Evaluations – Dataset-defined Problems . . 13
4.3.2 Problem Domains for AI System Evaluations 14

4.4 Scenario and Metrics . 17
4.5 Implementation Constraints . 17
4.6 Measure and Reporting Procedure . 17

4

1 Introduction

BenchCouncilTM AISys-IQ is a standardized benchmarking specification and methodology designed
for evaluating the IQ of intelligent systems. This framework comprises two tiers of IQ evaluation: one
for intelligent algorithms and the other for intelligent systems. Within both algorithmic and systemic
IQ assessments, the focus lies on three categories of intelligence: single-task intelligence, industrial
intelligence, and general intelligence. This approach caters to various benchmarking needs, ensuring
thoroughness, diversity, and scalability. Single-task intelligence pertains to AI algorithms and systems
specialized in executing singular tasks like image classification or object detection. Industrial intelligence
refers to AI algorithms and systems tailored for intricate industrial contexts or entire life-cycle applications
characterized by long workflows and multiple components, such as search engines or social networks.
General intelligence encompasses AI algorithms and systems capable of addressing a broad spectrum of
tasks with versatility, like the functionality exhibited by ChatGPT.

AISys-IQ is maintained by Institute of Computing Technology (ICT), Chinese Academy of Sci-
ences(CAS), and QiYuan Lab. This specification defines the terminology and background, AISys-IQ
methodology, AISys-IQ benchmarks, system under test, life of running a workload, quality target, scenario
and metrics, models and datasets, implementation constraints, measure and report procedure, and reference
implementation.

2 Terminology and Background

2.1 Terminology

The terminologies used in this specification are as follows.
AI is short for Artificial intelligence. This specification focuses on single-task AI, industrial AI, and

general AI.
IQ refers to the intelligence quotient of intelligent algorithms and systems. Within this specification,

AISys-IQ provides methodology, benchmarks, and metrics for the IQ assessment of intelligent algorithms
and systems.

Benchmark refers to the process of running a specific program or workload on a specific machine or
system and measuring the resulting performance [1].

Benchmark Suite refers to a suite of benchmarks.
Single-task intelligence refers to AI algorithms and systems specialized in executing singular tasks

like image classification or object detection.
Industrial intelligence refers to AI algorithms and systems tailored for intricate industrial contexts or

entire life-cycle applications characterized by long workflows and multiple components, such as search
engines or social networks.

General intelligence refers to AI algorithms and systems capable of addressing a broad spectrum of
tasks with versatility, like the functionality exhibited by ChatGPT.

An individual can be defined as an object described by a set of data. A system is a unified entity
formed by a group of interacting or interdependent individuals, regardless of whether they are of the same
type or different types. Systems can exhibit recursive structures, where a higher-level system is composed
of interacting or interdependent lower-level systems.

A population refers to the entire group of individuals or systems that are the subject of study and
understanding, whereas a sample represents a smaller subset of individuals or systems from the population.
Variables or quantities are attributes of individuals or systems. Parameters are numbers that describe
certain attributes of the population, while statistics are numbers that describe certain attributes of a sample.
Inference is the process of making conclusions about parameters of a population based on statistics derived
from sample data.

A function (denoted as f) is a rule that assigns a unique element from set R (referred to as f(x)) to
each element in set D. In this context, the domain (denoted as D) refers to the set of all possible values for
which the function is defined. On the other hand, the range of a function (denoted as f(x)) includes all

5

possible values that f(x) can take as x varies within the domain. An independent variable is symbolically
represented and can take any number within the domain.

A model is a simplified version of a system that cannot be extensively analyzed. Models can be
physical or mathematical. A mathematical model is a mathematical description of a system, typically
represented by functions or equations, aimed at understanding the system and predicting its behavior.
Throughout this article, unless explicitly stated otherwise, the terms ”system” and ”model” will be used
interchangeably.

Treatment refers to specific conditions or interventions applied to the subjects of study. An obser-
vational study involves observing individuals or systems and measuring variables of interest without
attempting to influence their responses, while an experiment is designed to deliberately apply treatments to
individuals or systems to measure and analyze their responses. In experiments with multiple independent
variables, treatments consist of specific combinations of values assigned to these variables. In under-
standing causal relationships, experiments are crucial as opposed to observational studies. Even though
observational studies are based on random samples, they are still insufficient for effectively measuring the
impact of one variable on another. Experiments provide us with convincing and conclusive data, making
them the only true source of evidence for believing in causal relationships.

Confounding refers to the situation where two independent variables are associated in a way that
makes it difficult to distinguish their specific effects on the dependent variable. In other words, the effects
of these independent variables become entangled, making it challenging to attribute specific effects to
each independent variable. In such cases, the independent variable responsible for this confounding effect
is termed a confounding variable. Control entails keeping other independent variables that may influence
the response constant, with the primary purpose of a control group being to provide a baseline for the
evaluation and comparison of alternative treatments.

Quality refers to the ability of a AI model producing correct results.
Tail Latency refers to the latency values associated with the slowest responses or operations in a

system. It represents the delay experienced by a small percentage of requests or tasks, often measured at
the upper percentiles of latency distribution, such as the 99th percentile or 90th percentile. Intelligent
systems focus on critical execution paths, where end-to-end execution time serves as a vital metric.

Tail Quality refers to the impact of model quality impacted by the tail latency. Under the influence
of tail latency, the tail quality of intelligent systems can be constrained by the limitations imposed by
long tail latency. To simultaneously address the impacts of latency and algorithmic quality, we utilize tail
quality metrics, such as tail quality under 99th percentile tail latency constraints, tail quality under 90th
percentile tail latency constraints, and others.

Quality of Service (QoS) Tasks refers to a task whose latency or quality performance meets certain
threshold requirements. Here, a QoS task refers to a task with application execution demands that are not
system tasks, unfinished tasks, or repetitive tasks.

Goodput refers to the number of QoS tasks completed per unit time. Assuming the system executed
M QoS tasks within time period T, the goodput is calculated as M / T.

Yield refers to the ratio of completed QoS tasks to total tasks.
Reference Implementation refers to the official benchmark implementation provided for reference.
System Under Test (SUT) refers to a system that is being tested for correct operation [2].

2.2 Background

As the AI advancement has brought breakthroughs in processing images, video, speech, and audio [3],
more and more domains and fields pervasively employ AI techniques to augment their products and ser-
vices, and hence boost the deployments of massive AI algorithms, systems and architectures. For example,
Alibaba proposes a new DUPN network for more effective personalization [4]. Facebook integrates AI
into many essential products and services like news feed [5]. Google proposes the TensorFlow [6] system
and the tensor processing unit (TPU) [7] to accelerate the service performance. Amazon adopts AI for
intelligent product recommendation [8].

6

Although there is considerable evaluation of intelligent algorithms or systems in terms of model quality
and performance, little work has focused on assessing the model’s intelligence quotient (IQ). Meanwhile,
in the context of AI’s rapid evolution, the diversity of intelligent algorithms and systems poses a profound
challenge in measuring their ”IQ”. Unlike human intelligence, which is generally assessed through
standardized tests focusing on aspects like logic, reasoning, and problem-solving, AI encompasses a vast
array of abilities tailored to different tasks. For example, single-task intelligent algorithms or systems
might demonstrate exceptional performance in specialized areas, such as image recognition or language
translation, while industry-specific intelligent algorithms or systems are optimized for particular end-
to-end applications with long and complex execution path, like unmanned systems or search engine.
General-purpose AI, on the other hand, strives to achieve a broader range of competencies but often
lacks the fine-tuned proficiency of specialized systems. This variation in objectives and performance
criteria makes it difficult to define a single, unified measure of AI intelligence that is as meaningful and
standardized as human IQ scores.

To solve these problems, this specification presents BenchCouncil AISys-IQ as the first benchmark
specification and methodology for the IQ assessment of intelligent algorithms and systems.

3 AISys-IQ Evaluatology

AISys-IQ follows the Evaluatology proposed by Prof. Zhan et al [9]. This section illustrates the
background of evaluatology and AISys-IQ evaluatology.

3.1 Background of Evaluatology

Evaluatology [10] involves assessing an individual or system, referred to as the subject. The subject can be
a single entity or a more intricate scenario. Each subject has stakeholders who determine the requirements
and define value functions for measurement and outcome comparison. The essence of evaluation is to
apply a well-defined evaluation condition (EC) to a well-defined subject, which forms an evaluation
model (EM). Subsequently, measurements or tests are conducted to evaluate the subject using the value
functions defined by the stakeholders. Among them, the EC contains five basic components [10]: “(1)
a set of equivalent definitions of problems or tasks; (2) the set of a collective of equivalent problem or
task instances; (3) the algorithms or algorithm-like mechanisms; (4) the implementations of algorithms or
instantiations of algorithm-like mechanisms; (5) support systems”.

In evaluating a single subject, it is essential to follow the systematic methodology, that is, to utilize
a reference evaluation model (REM) that establishes equivalent evaluation conditions (EECs) or least
equivalent evaluation conditions (LEECs) to ensure fair and unbiased evaluations across different subjects.
The REM serves as a controlled environment within an EM element, where one independent variable is
manipulated while the others are held constant. EEC represents a strict form of equivalence that requires
every individual component in each level of the two ECs to be equivalent. As a more relaxed form of
equivalence, LEEC ensures equivalence at the first two levels of ECs.

When it comes to complex scenarios, the evaluation methodology aims to create a set of EMs that
maintain transitivity, from a real-world evaluation system to a perfect evaluation model and a pragmatic
evaluation model [10].

Besides, evaluatology, benchmarkology is considered the engineering of evaluation. The essence of a
benchmark is “a simplified and sampled EC, specifically a pragmatic EC, which ensures different levels
of equivalency, ranging from LEECs to EECs” [10].

3.2 AISys-IQ Evaluatology

The AISys-IQ Evaluatology framework presents a comprehensive approach to assessing the intelligence
quotient (IQ) of both intelligent algorithms and intelligent systems. It is structured around the evaluation
requirements of stakeholders, focusing on two primary areas: algorithmic IQ assessment and system IQ

7

E’1 E’a

E11 E1b Ea1 Eac

A’111 A’11d A’1b1 A’1be A’a11 A’a1f A’ac1 A’acg

A1111

… …

A111h… A11d1 A11di… A1b11 A1b1j… A1be1 A1bek… Aa111 Aa11m… Aa1f1 Aa1fn… Aac11 Aac1o…

…

… …

Aacg1 Aacgp…

… …

Evaluation Condition (EC)

a set of equivalent definitions of problems or tasks (E’)

the implementations of algorithms or instantiations of algorithm-
like mechanisms (A)

the set of a collective of equivalent problem or task instances (E)

the algorithms or algorithm-like mechanisms (A’)

Component 1

Component 2

Component 3

Component 4

support systems (S)Component 5

S1 S2 S3 S4 S5 S6 S7 S8 Sq Sq+1 Sq+2 Sq+3 Sq+4 Sq+5 Sq+6 Sq+7…

Figure 1: The Hierarchical Definition of an EC. [10]

,QWHOOLJHQW�$OJRULWKP�DQG�6\VWHP�,4�$VVHVVPHQW��(YDOXDWLRQ�0RGHO�

$OJRULWKP�,4���(YDOXDWLRQ�&RQGLWLRQ
(EC)

$OJRULWKP�RULHQWHG�SUREOHPV�RU�WDVNV�

,QVWDQWLDWLRQV�RI�NHUQHOV�RU�EXLOGLQJ�
EORFNV

3UREOHP�RU�WDVN�LQVWDQFHVҁWHVWGDWD҂

.HUQHOV�RU building blocks of algorithms

&RPSRQHQW�1

&RPSRQHQW�2

&RPSRQHQW�3

&RPSRQHQW�4

6XSSRUW�V\VWHPV�IRU�DOJRULWKP�,4�
DVVHVVPHQW

&RPSRQHQW�5

Subjectғ,QWHOOLJHQW�$OJRULWKPV
ҁYDULDEOHV҅H�J���LPSOHPHQWDWLRQ��SDUDPHWHU��HWF�҂

(YDOXDWLRQ�2XWFRPH��,4�YDOXH�ғYDOXH�IXQFWLRQV�WKDW�UHƊHFW�VWDNHKROGHUVŇ�UHTXLUHPHQWV

6WDNHKROGHUVŇ�HYDOXDWLRQ�UHTXLUHPHQWV

6LPSOH�VFHQDULR &RPSOH[�VFHQDULR

6LQJOH�WDVN�LQWHOOLJHQFH ,QGXVWULDO�LQWHOOLJHQFH *HQHUDO�LQWHOOLJHQFH

,4�DVVHVVPHQW�IRU�$,�DOJRULWKPV�DQG�V\VWHPV�
RQ�DYHUDJH�FDVH

,4�DVVHVVPHQW�IRU�$,�DOJRULWKPV�DQG�V\VWHPV�
RQ�ZRUVW�FDVH

(YDOXDWLRQ�PHWULFV�RQ�DYHUDJH�FDVH (YDOXDWLRQ�PHWULFV�RQ�ZRUVW�FDVH

TXDOLW\�SHUIRUPDQFH�PHFKDQLVPV�RQ�DYHUDJH�FDVH TXDOLW\�SHUIRUPDQFH�PHFKDQLVPV�RQ�ZRUVW�FDVH

1RUPDOL]HG�VFRULQJ�PHFKDQLVP��KLHUDUFKLFDO�ZHLJKWV�GHƉQHG�E\�VWDNHKROGHUV҂

6\VWHP�,4���(YDOXDWLRQ�&RQGLWLRQ
(EC)

6\VWHP�RULHQWHG�SUREOHPV�RU�WDVNV�

,QVWDQWLDWLRQV�RI�$OJRULWKPV�RU�
DOJRULWKP�OLNH�PHFKDQLVPV

3UREOHP�RU�WDVN�LQVWDQFHVҁVLQJOH�WDVNV��
22'$�OLNH�RU�JHQHUDO�VFHQDULRV҂

$OJRULWKPV�RU�DOJRULWKP�OLNH�PHFKDQLVPV

6XSSRUW�V\VWHPV�IRU�V\VWHP�,4�
DVVHVVPHQW

Subjectғ,QWHOOLJHQW�6\VWHPV
ҁYDULDEOHV�OLNH�V\VWHPV�SDUDPHWHUV҂

Figure 2: AISys-IQ Evaluatology.

8

assessment. The framework emphasizes the necessity to accommodate various scenarios, from simple to
complex, and to consider both single-task, multi-task with intricate interactions, and general scenarios.

3.2.1 Stakeholders’ Evaluation Requirements

At the top of the framework, the stakeholders’ evaluation requirements are highlighted, indicating that the
entire evaluatology process is driven by the needs and expectations of relevant parties. These requirements
guide the development of evaluation conditions tailored to assess intelligent algorithms and systems
effectively.

3.2.2 Algorithm IQ Evaluatology

The Algorithm IQ Evaluatology component focuses specifically on evaluating the intelligence of algo-
rithms. This evaluation is structured through several key components:

• Algorithm-oriented Problems or Tasks: Identifying specific problems that the algorithms are
designed to solve.

• Problem or Task Instances (Test Data): Utilizing various instances of problems to evaluate algorithm
performance, ensuring robustness and adaptability.

• Kernels or Building Blocks: Analyzing the fundamental components that make up the algorithms,
which can influence their overall performance.

• Instantiations of Kernels and Building Blocks: Evaluating how different configurations of these
components impact algorithm effectiveness.

• Support Systems for Algorithm IQ Assessment: Establishing auxiliary systems that assist in the
evaluation process, providing necessary tools and methodologies.

The evaluation metrics for algorithms consider average-case performance, ensuring a holistic view of
their effectiveness across various scenarios.

3.2.3 System IQ Evaluatology

On the other hand, the System IQ Evaluatology addresses the intelligence assessment of entire systems.
This evaluation follows a parallel structure:

• System-oriented Problems or Tasks: Defining the specific problems the systems are designed to
tackle.

• Problem or Task Instances: Similar to algorithms, various instances are used to assess system
performance under different conditions—this includes simple tasks and more complex OODA-like
(Observe, Orient, Decide, Act) scenarios.

• Algorithms or Algorithm-like Mechanisms: Focusing on the algorithms that drive the systems and
their effectiveness in achieving the desired outcomes.

• Support Systems for System IQ Assessment: Implementing systems that aid in the evaluation of
intelligent systems, providing necessary frameworks and tools.

• Variables and System Parameters: Considering the different variables that can affect system
performance, ensuring a comprehensive assessment.

The evaluation metrics for systems also focus on worst-case scenarios, providing insights into their
robustness and reliability under challenging conditions.

9

3.2.4 Evaluation Outcomes - IQ

At the bottom of the framework, the value functions and evaluation outcomes reflect the stakeholders’
requirements. This section describes a multi-layered and multi-level normalization scoring mechanism
that aggregates the results from both algorithm and system assessments. The scoring mechanism accounts
for various scenarios, including:

Average-case and worst-case evaluations. Single-task and multi-task interactions. General tasks and
specific problem instances. The ultimate goal is to derive an IQ assessment result that aligns with the core
evaluation needs of the stakeholders.

In summary, the AISys-IQ Evaluatology framework provides a structured and comprehensive method-
ology for assessing the intelligence of both algorithms and systems. By focusing on specific evaluation
conditions and components, it ensures that the assessments are relevant and aligned with stakeholders’
needs. This dual approach enhances the understanding of both algorithmic and systemic intelligence,
ultimately contributing to the development of more effective and intelligent solutions.

4 Design

The design of AISys-IQ is illustrated from the perspectives of system under test (SUT), life of running a
workload, benchmark problem domains, quality target, scenario and metrics, implementation constraints,
measure and reporting procedure.

4.1 System under Test

AISys-IQ system contains multiple components for AI algorithm IQ assessment and AI system IQ
assessment, which are provided for all AISys-IQ users. According to stakeholders’ benchmarking
requirements and considerations, AISys-IQ users are feasible to implement an SUT.

4.1.1 AI Algorithm IQ System under Test

Algorithm IQ system under test consists of stakeholders’ inputs, algorithm evaluation conditions, a system
under test (SUT), monitoring tools, and AI algorithm IQ output components. Fig. 3 shows Algorithm IQ
SUT overview.

Stakeholders’ inputs is to receive the user-defined settings according to stakeholders’ requirements.
For example, the intelligence types like algorithms for single tasks, for industrial tasks, or for general tasks,
the evaluations under different cases like average-case, worst-case, or hybrid-case, the weight vectors
for different settings. This module considers the stakeholders’ evaluation requirements and application
scenarios, which have an impact on the IQ output.

Algorithm evaluation conditions (EC) define the five levels of EC components.
Component One: define the problems or tasks solved by intelligent algorithms, segmented by ap-

plication type, mainly encompassing singular problems or tasks such as image classification, natural
language processing, speech recognition, industry/scenario-level problems or tasks like search engines,
e-commerce, dual-use intelligent scenarios, and general problems or tasks like reasoning, understanding,
common sense addressed by large language models. The construction of Evolutionary Computation (EC)
varies depending on different application types.

Component Two: define the instantiation of intelligent algorithms for the given problem or task. In the
realm of intelligent algorithms, problems are abstract concepts that are difficult to define mathematically.
Typically, a specific instance of a problem or task is represented by a dataset with real labels. For instance,
ImageNet in the image domain is a notable example of a problem or task instance. It is important to note
that the training and validation sets within a dataset are variables and conditions of the evaluation object
and are part of the evaluation subject. The validation set within the dataset truly represents the instance of
the problem or task. During evaluation, the intelligent algorithm is tested by inputting test data, generating

10

Algorithm
Evaluation

Conditions (EC)
▪ Tasks
▪ Test dataset
▪ Kernels/building

blocks
▪ Implementations
▪ Running

environments

Stakeholders’ input
▪ Average-case/Worst-case
▪ Weight vectors

System under Test
(AI Algorithms)

Monitoring Tools

AI Algorithm IQ
Output

(average quality, tail
quality)

▪ Single tasks
▪ Industrial tasks
▪ General Tasks

Figure 3: AI Algorithm IQ System under Test.

an output, and comparing it with the real label. This testing process is based on an evaluation model (EM)
that includes EC and the subject, assessing the evaluation object through measurement or testing.

Component Three: collection of algorithmic solutions or similar algorithmic mechanisms tailored
to the given problem. In intelligent algorithm evaluation, the typical application features and building
blocks of abstract intelligent algorithms are abstracted. Primitive intelligent algorithms are formed through
various combinations of different building blocks, enabling precision inference based on the combination
of building blocks. Building blocks vary across different application types. For instance, in single-task
intelligent algorithms, the building block is a sub-code block within the algorithm, like a sub-network in a
neural network. Building blocks for industry/scenario intelligence are combinations tailored to single-task
intelligent algorithms. The predictive capabilities of the algorithm are based on a core set of similar
algorithm mechanisms.

Component Four: implementation of algorithms or instantiation of similar algorithm mechanisms,
representing the instantiation of the building blocks from Component Three.

Component Five: support system for the evaluation of intelligent algorithms. The evaluation of
intelligent algorithms requires implementation and execution on a computer system, encompassing all
systems involved in the process.

System under test (SUT) for AI algorithms defines the subjects to be evaluated. The evaluation of the
intelligence quotient (IQ) of intelligent algorithms targets the algorithms themselves. Moreover, intelligent
algorithms encompass numerous variables pertinent to evaluation, such as the specific implementation of
the algorithm, parameter configurations, and the training and validation datasets required for algorithm
model training. The intelligent algorithms themselves, along with associated variables and conditions,
collectively form a diverse set of evaluation objects.

Monitoring tools provide a suite of scripts that monitor the running performance and running status.
When execution ends, the results are generated, including the model qualities on average-case and
worst-case and IQ results.

4.1.2 AI System IQ System under Test

AI System IQ system under test consists of dataset, a system under test (SUT), monitoring tools, and
result output components. Fig. 4 presents AI system IQ SUT overview.

Stakeholders’ inputs is to receive the user-defined settings according to stakeholders’ requirements.
For example, the targets of the intelligent systems like for completing single tasks, industrial tasks,
or general tasks, the evaluations under different cases like average-case, worst-case, or hybrid-case,

11

System
Evaluation

Conditions (EC)
▪ Tasks
▪ Task instances
▪ OODA-like

algorithms
▪ Algorithm

implementations
▪ Support systems

Stakeholders’ input
▪ Quality & Time
▪ Average-case/Worst-case
▪ Weight vectors

System under Test
(AI Systems)

Monitoring Tools

AI System IQ
Output

(QoS tasks,
Goodput, Yield)

▪ Systems for
single tasks

▪ Systems for
industrial tasks

▪ Systems for
general Tasks

Figure 4: AI System IQ System under Test.

the weight vectors for different settings, and the quality and time requirements according to different
application scenarios. This module considers the stakeholders’ evaluation requirements and application
scenarios, which have an impact on the system IQ output.

System evaluation conditions (EC) define the five levels of EC components.
Component One: define the problems or tasks addressed by intelligent systems, categorized by applica-

tion type, primarily encompassing singular tasks such as image classification, natural language processing,
speech recognition, and industry/scenario-level problems or tasks like search engines, e-commerce, dual-
use intelligent scenarios, as well as general problems or tasks like reasoning, understanding, and common
sense targeted by large language models. The Evolutionary Computation (EC) construction varies across
different application types.

Component Two: define the instantiation of intelligent systems for the given problem or task. Within
intelligent systems, problems are abstract concepts that are challenging to precisely define through a
singular mathematical approach. Typically, a specific instance of a problem or task is represented by a
dataset with real labels.

Component Three: Collection of algorithmic solutions or similar algorithmic mechanisms tailored to
the given problem.

Component Four: implementation of algorithms or instantiation of similar algorithmic mechanisms,
representing the instantiation of building blocks from Component Three.

Component Five: support system. It furnishes the necessary resources and environment on which the
evaluation depends.

System under test (SUT) for AI systems defines the subjects to be evaluated. The evaluation subject
of intelligent systems is the systems themselves, encompassing the overall architecture, design and
implementation of individual modules, the operational environment, and external factors interacting with
the system. The evaluation of intelligent systems extends beyond functional performance to include
hardware support, operational conditions, input-output data, system parameter configurations, as well as
the training and validation datasets used. These elements, intertwined with the design, implementation,
and operation of intelligent systems, form a multidimensional and multivariable evaluation subject.

Monitoring tools provide a suite of scripts that monitor the running performance and running status.
When execution ends, the results are generated, including the QoS (quality of service) tasks, goodput,
yield, and IQ results.

12

4.2 Life of Running a Workload

4.2.1 AI Algorithm IQ Evaluation

At startup, the data/query generator send requests to SUT according to the five components of evaluation
conditions (EC). Then the SUT receives the input data and processes them. During processing, the data are
preprocessed and flowed through one or multiple AI related and non-AI related modules. The generator
sends data to be processed according to specified configurations. The configuration designates parameters
like data size, concurrency, distribution, user thinking time, and the ratio of different data types, e.g., text
items and image items, to depict realistic evaluation scenarios.

The SUT processes the input data and returns the results. During the run, monitoring tools are started
in background and sample algorithm-level, system-level, and microarchitecture-level performance every
specific seconds. Also, the response time of each data input is tagged and recorded. After the run, an
script outputs the running results.

4.2.2 AI System IQ Evaluation

AI system IQ evaluation consist of running scripts including various tasks on different datasets, and
monitoring tools.

At startup, the SUT loads samples or batches into memory and runs selected workloads with specific
AI tasks. During the run, monitoring tools are started in background and sample system and micro-
architecture performance every specific seconds. Also, the running time and model quality to achieve
stakeholders’ requirements will be recorded. After the run, an script checks whether the model quality
and time satisfies the rules and outputs the running performance.

4.3 AISys-IQ Problem Domains

This section illustrates the problem domains of AISys-IQ from the perspectives of AI algorithm and AI
systems.

4.3.1 Problem Domains for AI Algorithm Evaluations – Dataset-defined Problems

To achieve intelligence evaluation of any architectural model, it is crucial to represent the model archi-
tecture in a suitable manner. ONNX is an open deep learning model interchange standard that provides
a universal language for any machine learning framework to describe its models, defining all necessary
operations for model inference. Therefore, we select models in the ONNX format or convertible to ONNX
format, abstract their architectures as directed acyclic graphs (DAGs), and represent their nodes with
information about different operators under the ONNX standard.

Given the need for a substantial amount of data to train the intelligence evaluation model, and as far as
we know, such datasets are currently unavailable, we must construct a dataset from scratch. This dataset
should include numerous models along with their trained accuracies. Through algorithmic statistical
analysis of these model architectures and corresponding dataset and accuracy information, we train the
intelligence prediction model to evaluate the intelligence of input model architectures. In this process,
we identify building blocks (subgraphs recurring in models), cluster different combinations of building
blocks to understand their relationships and impact on model intelligence, and ultimately predict accuracy
based on these building block combinations.

To build the aforementioned dataset, training a vast number of models on various datasets is undeniably
a challenging task. After conducting research, we discovered a plethora of well-trained models available
for reuse in Hugging Face. Additionally, many model repositories’ README files document the tasks,
datasets, and corresponding metric values associated with the models. Furthermore, a significant portion
of model README files contain Model Card information provided by the authors, detailing the Task,
Dataset, Metric, and their respective values.

13

Therefore, we download all ONNX-compatible models stored in the Hugging Face Hub, including
repositories such as Timm, Diffusers, Transformers, Sentence-Transformers, and pre-trained models
labeled with ONNX tags. These models support a comprehensive and integrated evaluation of model
architectures’ performance for different tasks and datasets. Building upon this foundation, we design a
complete process to annotate their Task, Dataset, Metric, and training information.

Our evaluation program aims to predict the metrics and corresponding values of intelligent models on
different tasks and datasets by inputting the architectures of these models. Our dataset comprises directed
acyclic graphs (DAGs) representing machine learning model architectures from various domains. Hence,
we opt for graph convolutional neural networks as the evaluation model suited for this requirement.

The design of graph convolutional neural networks involves constructing features at the node level,
graph level, and establishing connectivity among nodes within the entire graph. We choose operators at
the node level as node features and metrics and corresponding values of model architectures represented
by DAGs as graph-level features. Common methods for representing connections between nodes in a
graph include adjacency matrices and adjacency lists. However, since the DAGs in our dataset encompass
varying numbers of nodes from dozens to tens of thousands, adjacency matrices become sparse and
challenging to represent large-scale graph structures. Therefore, we utilize the COO format adjacency list
to depict the connectivity of the entire graph, utilizing two arrays to record the starting and ending nodes.

In terms of model design, we primarily employ graph convolution and differentiable pooling to
accomplish tasks such as node representation and building block extraction. This approach enables us to
predict the accuracy of intelligent model architectures composed of combinations of building blocks.

In the realm of public model repositories, numerous isomorphic neural network architectures abound,
necessitating the curation of unique architectures within datasets. To ensure the distinctiveness of each
architecture, a critical filtering process is essential. Leveraging the Weisfeiler Lehman (WL) graph
hash algorithm, we compute the derived Directed Acyclic Graphs (DAGs) to pinpoint heterogeneous
architectures. The WL algorithm, known for its ability to produce identical results for isomorphic graphs,
provides a robust mechanism to guarantee unique hashes for divergent graphs. In our approach, we
designate operator type and attributes embodied in nodes as the focal points for the WL hash algorithm
iterations, thereby safeguarding the dataset’s architectural heterogeneity concerning hyperparameters and
operator types. Following meticulous filtering procedures, we successfully identified 7629 heterogeneous
neural network architectures from a pool of 174K real-world models.

During the inception of the initial dataset-defined problems (Younger dataset), a staggering 743.5K
publicly accessible models existed, with 341K models being convertible to the ONNX format. By the time
of the Younger dataset’s inaugural release, we had isolated and processed 174K models. This observation
underscores a striking fact: despite the substantial base and rapid growth of deep learning models, the
proportion of effective and diverse neural network architectures amounts to less than 1% of the total model
count.

4.3.2 Problem Domains for AI System Evaluations

Image Classification
Image classification is to extract different thematic classes within an image, which is a supervised

learning problem to define a set of target classes and train a model to recognize.
ResNet-50 [11]: A milestone in Image Recognition [11], marking the ability of AI to identify images

beyond humans. It solves the degradation problem, which means in the very deep neural network the
gradient will gradually disappear in the process of propagation, leading to poor performance. Due to the
idea of ResNet, researchers successfully build a 152-layer deep CNN. This ultra deep model won all the
awards in ILSVRC’15.

ImageNet Dataset [12]: A large visual database designed for use in visual object recognition software
research. More than 14 million images have been hand-annotated by the project to indicate what objects
are pictured and in at least one million of the images, bounding boxes are also provided. The data size is
more than 100 GB.

14

Reference Quality: The reference implementation of ResNet-50 on ImageNet dataset achieves Top-1
accuracy 74.9%.

Natural Language Processing Task
We select the Vicuna-13B-v1.3 as the test model and process it using a custom dialogue dataset. This

task is primarily aimed at evaluating the system’s performance in generative language modeling tasks. The
Vicuna-13B-v1.3 model, known for its advanced capabilities in natural language processing, stands as a
cutting-edge choice for our evaluation task. Leveraging its vast parameter size and pre-trained knowledge,
this model excels in generating coherent and contextually appropriate responses in dialogue scenarios.
Its proficiency extends to a wide range of generative language modeling tasks, showcasing remarkable
fluency and contextual understanding.

In our endeavor to evaluate the system’s performance, we employ a meticulously curated custom
dialogue dataset that reflects the intricacies and nuances of real-world conversational exchanges. By
subjecting the Vicuna-13B-v1.3 model to this rich dataset, we aim to gauge its ability to generate
responses that not only align with grammatical correctness but also exhibit a deep comprehension of
context, coherence, and conversational flow.

Through this evaluation, we seek to uncover the model’s strengths and areas for improvement, shedding
light on its adaptability to diverse dialogue contexts and its potential for enhancing user experiences in
natural language processing applications.

Unmanned Systems and Navigation Tasks
Unmanned systems and navigation tasks is a typical safety-critical and latency-critical application.

It requires not only millisecond-level response time from the data perception to decision feedback but
also near-100% model quality and human reactions. We construct an navigation workloads for unmanned
systems based on our methodology. The benchmark consists of six modules and involves five iterative
execution paths. In addition, to support evaluation with different and user-defined configurations, we
provide diverse deployment settings using different web servers and protocols and supporting user-defined
parameters, as shown in Fig. 5.

AI Process (P)

Data Generator
(O)

(sensory data)

Object Detection

Drivable Area
Segmentation

Lane Detection

Trajectory Prediction

Virtual Human Models (H)

AI Decision (D)

Driving Rules

Rule-based Decision

Attention Mechanism

Human Reaction Time

Decision Acceptance

Human Operation Time

LLM Decision (L)

LLM-based Instruction-
following

Human-language
instructions

Final Decision and Action (A)

Web Servers and Protocols
• TorchServe (HTTP)
• Flask (HTTP)
• paho.mqtt (MQTT)

Parameters
• User-defined setting tools

Figure 5: Navigation Workloads for Unmanned Systems.

Six modules. Our benchmark combines the up-to-date techniques like large language model (LLM)
and contains six modules. They are data generator, AI process, AI decision, virtual human, LLM decision,
and action modules.

The data generator module (Observe) simulates the vehicle sensors to obtain and send sensory data. It
uses publicly available datasets as input and sends the data frame to the other modules. We implement the

15

data generator module using Python. We use the publicly available datasets including BDD100K [13] and
LMDrive dataset [14].

The AI process module (Process) processes the sensory data sent by the data generator and perform
object detection, drivable area segmentation, lane detection, and trajectory prediction. We use the state-
of-the-art AI models for autonomous driving. Specifically, we use HybridNets [15] for object detection,
drivable area segmentation, and lane detection. We use QDTrack [16] for trajectory prediction.

The AI decision module (Decide) receives the outputs of AI process module, and generates a rule-based
decision according to a series of driving rules.

The virtual human module (Human) simulates the behavior of a driver or passenger and interacts
with AI models. We introduce attention mechanism and simulate the human’s decision and decision time.
Among them, the human’s decision is generated by a decision acceptance model which accept or reject
the AI model’s decision. In emergency, it may take the sensory data as input and make a decision directly
without an AI model’s decision. The human reaction time and human operation time refer to a learned
probabilistic perceptual model [17] which characterize the human reaction time after observing a visual
target.

The LLM decision module (LLM) uses the large language model within LMDrive [14] to receive
human-language instructions. The module would follow the human-language instructions or reject the
instructions according to its prediction result.

The action module (Action) receives the final decision, simulates the action, and outputs the statistical
results.

Five execution paths. According to the different interaction modes between human and AI, and the
potential values of LLM for autonomous driving, we integrate five representative execution paths in HiTL
Auto-driving benchmark. The five execution paths are as follows. Note that for clarity, we use O, P, D, H,
L, and A to represent the data generation, AI process, AI decision, virtual human, LLM decision, and
action modules, respectively.

(1) OPDA path (172 in Fig. 5) indicates a regular execution path of autonomous driving, which
completely adopts AI models to receive and process the sensory data, and further makes a decision and
performs action accordingly.

(2) OPDHA path (173 in Fig. 5) incurs a human intervention built upon the regular OPDA path. The
AI decision is reviewed and adjusted by human to avoid potential risks. The human decision is the final
decision to be performed.

(3) OPDHLA path (174 in Fig. 5) exploits LLM for better explainability and natural interaction with
humans [14] based on the OPDHA path. In this condition, the human decision are delivered to LLM in
the form of human-language instructions. Then the LLM takes the instructions and sensory data as input
and makes the final decision.

(4) OHA path (175 in Fig. 5) indicates an emergency situation in which human makes the decision
directly according to his/her visual data without the output and decision of AI modules. For example, if the
driving environment changes suddenly like a rushing out pedestrian, the human will perform emergency
treatment other than waiting for the decision of AI models.

(5) OHLA path (176 in Fig. 5) indicates a similar situation with OHA path. The difference is that the
human says the language instructions and the LLM comprehends the instructions and performs actions.
This is possible since the human may be not able to operate quickly, for example, when sitting in the back
seat of the vehicle.

Large Language Models - TinyLlama-1.1B-Chat
TinyLlama-1.1B-Chat is a lightweight language model developed by the research team at the Singapore

University of Technology and Design (SUTD). With 1.1 billion parameters, it falls within the realm of
smaller-scale models compared to current large language models. However, it showcases capabilities on
par with larger models in terms of performance. We have selected InfiniLM as the execution framework,
proposed by the YuanYuan Lab, as it is designed to adapt to multiple domestic platforms such as FeiTeng.

In the realm of artificial intelligence, the evaluation of general intelligence systems holds paramount

16

significance. These systems are designed to exhibit a broad spectrum of cognitive abilities, enabling
them to adapt to diverse tasks, learn from new experiences, and make decisions in complex environments.
By assessing the performance of such systems, we gain insights into their proficiency across a range of
domains, facilitating advancements in AI research and applications.

TinyLlama-1.1B-Chat, a remarkable creation by the research team at the Singapore University of
Technology and Design (SUTD), stands out as a noteworthy addition to the landscape of language
models. Despite its relatively modest size of 1.1 billion parameters compared to larger models, TinyLlama-
1.1B-Chat demonstrates a remarkable capacity to understand and generate coherent text. Its efficiency
in handling various language tasks, including dialogue generation, sentiment analysis, and language
understanding, showcases the model’s adaptability and effectiveness in real-world applications.

Moreover, the utilization of InfiniLM as the execution framework for TinyLlama-1.1B-Chat un-
derscores the importance of platform compatibility and efficiency in deploying AI models on diverse
hardware architectures. With its ability to cater to domestic platforms like FeiTeng, InfiniLM enhances
the accessibility and usability of models like TinyLlama-1.1B-Chat, paving the way for broader adoption
and integration of advanced AI technologies in various settings.

4.4 Scenario and Metrics

AISys-IQ specifies different scenarios metrics for three benchmark levels (i.e., single-level, industrial-
level, and general-level AI algorithms and systems). AISys-IQ focuses on realistic scenarios and a series
of metrics covering model quality, performance, and quality of service on average and/or worst-case
evaluations, which are major stakeholders’ concerns.

Server. This scenario represents online server applications that simulate concurrent users with
different query configurations. The server scenario models an execution path containing either one or
more AI components, and measures the end-to-end performance containing AI related and non-AI related
modules and critical path. A data/query generator is provided to simulate concurrent users and send query
requests to SUT based on a specific configuration. Note that the query item provides diverse data types
to reflect different requirements of applications. For this scenario, both the latency, tail latency (user
perceived metric), throughput (service/producer concerned metric), model quality, number of quality of
service tasks, goodput, yield are important metrics. In addition, the quality deviation should satisfy the
stakeholders’ input settings, which are called quality-ensured 1. So the metrics of server scenario are
quality-ensured response latency, tail latency, latency-bounded throughput, number of quality of service
tasks, goodput, and yield.

Offline. This scenario represents batch processing mode. In this scenario, offline training and offline
inference are included, i.e., offline training and offline inference for single-level, industrial-level, and
general-level workloads. The metrics are tail latency, tail quality, No. of QoS tasks, goodput, and yield.

4.5 Implementation Constraints

AISys-IQ implementation should satisfy the following constraints.
AISys-IQ implementation should follow the define of five components of EC for both algorithm and

system IQ evaluations, to assure consistent and comparable evaluations.
AISys-IQ implementation disallows inconsistent settings for comparisons such as the input data and

the model implementations.

4.6 Measure and Reporting Procedure

AISys-IQ provides running scripts, source code, dataset, and monitoring tools for each benchmark. In
addition, AISys-IQ also provides user manuals for deployments and execution. After downloading
the AISys-IQ, users can directly run the benchmarks in their own environments and submit results to
BenchCouncil AI committee.

1Quality-ensured means the quality (e.g., accuracy, BLEU) deviation with target quality is within user-acceptable range.

17

AISys-IQ result submission should contain the following information: SUT description, including the
hardware and software configurations, benchmarking scores, e.g., achieved quality, latency, benchmark
configurations, including hyper-parameters like batch size, learning rate.

After the submission, BenchCouncil AI community will check the validity, repeatability, and authen-
ticity of the results. If the results are abidance by the rules, the submission will be reported online.

References

[1] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics and benchmark performance
prediction,” ACM Transactions on Computer Systems (TOCS), vol. 14, no. 4, pp. 344–384, 1996.

[2] https://en.wikipedia.org/wiki/System under test.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[4] Y. Ni, D. Ou, S. Liu, X. Li, W. Ou, A. Zeng, and L. Si, “Perceive your users in depth: Learning
universal user representations from multiple e-commerce tasks,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 596–605, ACM,
2018.

[5] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia,
A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang, “Applied
machine learning at facebook: A datacenter infrastructure perspective,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 620–629, IEEE, 2018.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12, ACM, 2017.

[8] B. Smith and G. Linden, “Two decades of recommender systems at amazon. com,” Ieee internet
computing, vol. 21, no. 3, pp. 12–18, 2017.

[9] J. Zhan, L. Wang, W. Gao, and R. Ren, “Benchcouncil’s view on benchmarking ai and other emerging
workloads,” arXiv preprint arXiv:1912.00572, 2019.

[10] J. Zhan, L. Wang, W. Gao, H. Li, C. Wang, Y. Huang, Y. Li, Z. Yang, G. Kang, C. Luo, et al., “Eval-
uatology: The science and engineering of evaluation,” BenchCouncil Transactions on Benchmarks,
Standards and Evaluations, vol. 4, no. 1, p. 100162, 2024.

18

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet: A large-scale hierarchical
image database,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pp. 248–255, IEEE, 2009.

[13] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k: A
diverse driving dataset for heterogeneous multitask learning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2636–2645, 2020.

[14] H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li, “Lmdrive: Closed-loop end-to-end
driving with large language models,” arXiv preprint arXiv:2312.07488, 2023.

[15] D. Vu, B. Ngo, and H. Phan, “Hybridnets: End-to-end perception network,” arXiv preprint
arXiv:2203.09035, 2022.

[16] J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, and F. Yu, “Quasi-dense similarity learning for
multiple object tracking,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 164–173, 2021.

[17] B. Duinkharjav, P. Chakravarthula, R. Brown, A. Patney, and Q. Sun, “Image features influence
reaction time: A learned probabilistic perceptual model for saccade latency,” ACM Transactions on
Graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.

19

	Introduction
	Terminology and Background
	Terminology
	Background

	AISys-IQ Evaluatology
	Background of Evaluatology
	AISys-IQ Evaluatology
	Stakeholders' Evaluation Requirements
	Algorithm IQ Evaluatology
	System IQ Evaluatology
	Evaluation Outcomes - IQ

	Design
	System under Test
	AI Algorithm IQ System under Test
	AI System IQ System under Test

	Life of Running a Workload
	AI Algorithm IQ Evaluation
	AI System IQ Evaluation

	AISys-IQ Problem Domains
	Problem Domains for AI Algorithm Evaluations – Dataset-defined Problems
	Problem Domains for AI System Evaluations

	Scenario and Metrics
	Implementation Constraints
	Measure and Reporting Procedure

