
Workload-Aware Aggregate Maintenance
in Columnar In-Memory Databases

Stephan Müller, Lars Butzmann, Stefan Klauck, Hasso Plattner
Hasso Plattner Institute

University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

Abstract—Database workloads generated by enterprise ap-
plications are comprised of short-running transactional as
well as long-running analytical queries with resource-intensive
aggregations. The expensive aggregate queries can be signifi-
cantly accelerated by using materialized views. This speed-up,
however, comes with the cost of materialized view maintenance
which is necessary to guarantee consistency when the under-
lying data changes.

While several view maintenance strategies are applicable in
the context of an in-memory column store, their performance
depends on various factors, most importantly the ratio between
queries accessing the materialized view and queries altering the
base data, called insert ratio. As a contribution in this paper,
we propose algorithms that determine the best-performing view
maintenance strategy based on the currently monitored factors.
Using our novel materialized aggregate engine, we are able to
switch between view maintenance strategies on demand. We
have created cost models for the identified view maintenance
strategies that determine at which insert ratio it is advisable to
switch to another strategy. Our benchmarks in SanssouciDB
reveal that for all identified workloads, switching between
maintenance strategies is more beneficial than staying with
a single strategy.

I. INTRODUCTION

For a long time, transactional and analytical queries have
been associated with separate applications. However, recent
research shows that the distinction between online transac-
tional processing (OLTP) and online analytical processing
(OLAP) is no longer applicable in the context of modern
enterprise applications as they execute both – transactional
and analytical – queries [16], [17]. For example, within
the available-to-promise (ATP) application, the OLTP-style
queries represent product stock movements whereas the
OLAP-style queries aggregate over the product movements
to determine the earliest possible delivery date for requested
goods by a customer [21]. Similarly, in financial accounting,
every financial accounting document is created with OLTP-
style queries, while a profit and loss statement needs to
aggregate over all relevant documents with OLAP-style
queries that are potentially very expensive [16].

To speed up the execution of long-running queries, a
technique called materialized views has been proposed [20].
A materialized view can be defined as database view – a
derived relation defined in terms of base relations – whose

tuples are persisted in the database. Throughout this paper,
we use the term materialized aggregate for a materialized
view whose creation query contains aggregations [19]. Ac-
cess to tuples of a materialized view is always faster than
computing the view on the fly. However, whenever the base
data is modified, these changes have to be propagated to
the corresponding materialized view to ensure consistency.
This process, known as materialized view maintenance, is
well established in academia [4], [9], [1] and industry [3],
[22] but with focus on data warehousing [1], [23], [11] and
traditional database architectures. While for purely analytical
applications, a maintenance downtime may be feasible,
this is not the case in a mixed workload environment as
transactional throughput must always be guaranteed.

In our recent work [14] we have evaluated view mainte-
nance strategies in a columnar in-memory database (IMDB)
that is able to handle transactional as well as analytical work-
loads on a single system. IMDBs such as SAP HANA [16],
Hyrise [8] or Hyper [12] are separated into a read-optimized
main storage and a write-optimized delta storage. Since the
main storage is compressed, all data changes of a table are
propagated to the delta storage to provide high throughput.
Periodically, the delta storage is combined with the main
storage [13]. This process is called merge operation. In
contrast, row-oriented database management systems do not
have this separation.

It turns out that IMDBs with a main-delta architecture are
ideally suited for a novel view maintenance strategy called
merge update [14]. Because of the main-delta separation, we
do not have to invalidate materialized aggregates when new
data is inserted to the delta storage. Instead, the materialized
aggregate table only contains the data from the main storage.
To retrieve the final query result, the newly added records in
the delta storage are aggregated on the fly and are combined
with the materialized aggregate table. Therefore, this novel
materialized view maintenance strategy is more efficient in
terms of maintenance costs.

While the merge update strategy outperforms other view
maintenance strategies for workloads with high insert ratios,
it is not the ideal choice for the full range of insert ratios.
Based on this premise, the goal of this paper is to propose
and evaluate an adaptive, workload-aware materialized ag-

2013 IEEE International Conference on Big Data

62978-1-4799-1293-3/13/$31.00 ©2013 IEEE

gregate engine that chooses the optimal view maintenance
strategy based on the current workload characteristics. In this
context, we introduce a strategy that observes a workload
and decide when to switch. This does not only reduce the
overall execution time for a specific workload, it can reduce
the CPU load of the database and therefore increase energy
efficiency or even postpone a scale-out.

Although we assume that our findings can be transferred
to a wide range of enterprise applications, we have chosen
a simplified scenario from the ATP application for the
evaluation of our view maintenance switching strategies as
it provides a mixed workload varying between high select
ratios (when checking for possible delivery dates) and high
insert ratios (stock movements) [21]. In our implementation,
ATP relies on a single, denormalized database table called
Facts that contains all stock movements in a warehouse
(Table IIa). Every movement consists of an unique transac-
tion identifier, the date, the id of the product being moved,
and the amount. The amount is positive if goods are put
in the warehouse and negative if goods are removed from
the warehouse. The materialized aggregate based on this
table is called Aggregates (Table IIb). The aggregate groups
the good movements by date and product and sums up the
total amount per date and product. The ATP application
does not consider physical data updates and uses an insert-
only approach. Logical deletes and updates are handled
through differential inserts. We further manually define the
materialized views and do not address the view selection
problem [10] in the scope of this paper. We focused on the
sum aggregation function as this is the dominant aggregate
function in our introduced application.

The remainder of the paper is structured as follows:
Section II gives a brief overview of related work. Section III
describes workload patterns that are the basis for our analy-
sis. Section IV explains view maintenance strategies before
Section V outlines an algorithm for switching between these.
In Section VI we discuss the results of our benchmarks.
Section VII provides outlook on future work and concludes
the paper with our main findings.

II. RELATED WORK

Gupta gives an extensive overview of materialized views
and related issues in [9]. Especially, the problem of materi-
alized view maintenance has received significant attention
in academia [5],[4]. Database vendors have also investi-
gated this problem thouroughly [3],[22] but besides our
earlier work [14], there is no work that evaluates materi-
alized view maintenance strategies in columnar in-memory
databases with mixed workloads. Instead, most of the exist-
ing research is focused on data warehousing environments
[23],[1],[11],[15] where maintenance down times may be
acceptable.

Chaudhuri et al. highlight in [6] the importance of
automated physical database design including index and

Table I: Definition of symbols

Symbol Definition
Ntotal Total number of queries
Ninsert Number of insert queries
Nselect Number of select queries
Ndelta Number of records in delta storage
Rselect Select ratio
Rinsert Insert ratio
Tselect Time to select the aggregate
Tdelta Time to aggregate the delta storage

Tmaintenance Time to maintain the aggregate
Tunion Time to union two results
Tdict Time to read from the dictionary structure

materialized view selection based on changing workloads.
Agrawal et al. extend the definition of a workload by not
only considering the ratios of query types within a workload,
but also their sequence [2]. However, neither of them do
address the problem of materialized view maintenance and
how the optimal maintenance strategy can be chosen based
on a changing workload.

III. WORKLOADS

Quoting the Oxford dictionary, a workload is the amount
of work to be done by someone or something 1. As databases
have to process queries, their workload is characterized by
its queries. These queries differ in type and complexity.

As mentioned earlier, our research focuses on aggregate
maintenance. Hence, we are interested in workloads contain-
ing requests and changes of aggregates. Our models distin-
guish two kinds of queries: single inserts changing the base
table and selects querying single aggregate values. Resulting,
the workload can be described by the terms insert ratio
respectively select ratio. The insert ratio specifies the number
of insert queries in relation to the total number of queries
(Equation 1). Consequential, the select ratio is 1−Rinsert.
These ratios change during a workload depending on the
underlying business processes.

Rinsert =
Ninsert

Ntotal
(1)

Rselect = 1−Rinsert (2)

We investigated the performance of aggregate mainte-
nance strategies for three different workload patterns: linear
patterns, periodic patterns and hard switching patterns. In
addition we researched the behavior under a randomly
changing workload to cover all workloads that are not
related to the three previous patterns. In the following, these
workload patterns are described.

1http://oxforddictionaries.com/definition/english/workload

63

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

Linear
Periodic

Hard Switching
Random Walk

Break-Even Point

Figure 1: Different patterns we used for our evaluation.

1) Linear Pattern: The insert ratio increases/decreases
linearly. We use this rather simple pattern to show the
influence of the insert ratio and the benefit when switching
the maintenance strategy. This pattern does not reflect any
specific business process.

2) Periodic Pattern: The insert ratio of the workload
behaves similar to a sinus curve: It periodically increases
to a maximum and decreases to a minimum. Parameters as
the length of period and the values of maximum/minimum
(amplitude) characterize this workload. This pattern repre-
sents a typical customer workload of the daily business with
peaks during the day and lows during the night.

3) Hard Switching Pattern: The insert ratio of the work-
load jumps between certain values. The length of the period
varies. This pattern reflects enterprises which have extreme
changes in their workload due to hourly batch jobs or
because their business includes several peaks per day.

4) Random Walk: The random walk helps us to evaluate
our switching strategy with extreme and unpredictable work-
loads. Since workloads of enterprise applications can vary
and not all can be described with patterns, we use this kind
of workload to cover the rest of scenarios that can occur. The
insert ratio randomly increases or decreases after constant
time frames. However, parameters allow us to influence the
specific workload behaviour, e.g. to increase the probability
of consecutive phases with insert ratio increases respectively
decreases.

Figure 1 shows an example for each workload patterns.
The linear pattern has a constantly decreasing insert ratio.
The periodic pattern consists of two sinus periods with an
amplitude between 0 and 1. The hard switching pattern
jumps between 0.3 and 0.6. The random walk starts at 0.5,
goes up to 0.8 and stays between 0.1 and 0.5 in the second
half. Compared to the other three examples, the insert ratio
of the random walk is not smooth. Additionally, the break-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Ti
m

e
in

 m
s

Insert ratio

NoMat
EIU
LIU

SLIU
MU

Figure 2: Total execution time of different maintenance
strategies for workloads with different insert ratios.

even point of the merge update and smart lazy incremental
update strategy is included (cf. Section IV).

IV. AGGREGATE MAINTENANCE STRATEGIES

This section describes the algorithms of maintenance
strategies and its cost functions. In the area of materialized
aggregates, two types of costs are of interest. First, the
required time to access the aggregate. Second, the required
time to maintain the aggregate. Therefore, our evaluation
and cost functions will only focus on these two types.

In [14], different types of aggregate maintenance strate-
gies were evaluated on an in-memory column store. Figure 2,
as part of that research, shows the performance of the
maintenance strategies for workloads with different insert
ratios between 0 and 1. For each single workload, the insert
ratio was constant. It can be seen that the performance of
a strategy differs for different insert ratios. In our work,
we focus on the best performing strategies, smart lazy
incremental update (SLIU) and merge update (MU). SLIU
is the best aggregate maintenance strategy for read intensive
workloads (less than 40 percent inserts). In contrast, MU
outperforms SLIU for workloads with higher insert ratios.
We call the workload characteristic, where the best perform-
ing maintenance strategy changes, the break-even point.

In the remainder of the section, we present the basic
algorithm, the cost function, and the switching costs for
SLIU and MU. The cost functions describe the average costs
for a single query based on the workload characteristics.
Working with the average costs enables us to express the
costs of a strategy independently from the workload size
(number of queries). Nevertheless, we can obtain the total
costs by multiplying the average costs with the number of
queries of a workload. The switching costs consist of a setup
and tear down phase. The setup phase describes the steps to

64

initialize a strategy whereas the tear down phase describes
the steps before a switch.

A. Smart Lazy Incremental Update

Using the smart lazy incremental update (SLIU) strategy,
the maintenance is done when reading the materialized
aggregate. Hence, after processing a select, the requested
aggregate is up to date. In order to be able to maintain
the aggregate during a select, one has to store the changes
caused by inserts since the last maintenance point. This is
done in a dictionary structure. If multiple changes for the
same aggregated value exist, they are combined to one value
to increase the performance.

Equation 3 shows the costs for a single query using SLIU.
The first summand describes the costs for read accesses on
the materialized aggregate. Tselect is the average time for
a single read of an aggregate. This time is multiplied by
the select ratio Rselect to weight the costs, since they are
not required for inserts. The costs to maintain the aggregate
are calculated by the second summand. The costs of a
single maintenance activity are Tdict + Tmaintenance. The
number of single maintenance activities increases with an
increasing insert ratio Rinsert, since each insert demands a
maintenance activity when the corresponding aggregate is
requested. However, with an increasing number of inserts,
the maintenance process can be optimized. The calculation
of the whole maintenance costs is therefore divided into two
scenarios. With an insert ratio Rinsert smaller than or equal
to 0.5, the maintenance costs Rinsert∗(Tdict+Tmaintenance)
are linear. With an insert ratio greater than 0.5, the average
maintenance costs decrease due to two facts. First, the
possibility of combining multiple values in the dictionary
structure with the same grouping attributes. Second, a ”bulk”
maintenance where all relevant values from the dictionary
structure are processed together. This improvement is ex-
pressed by the optimization function in Equation 4.

costsSLIU = Rselect ∗ Tselect + optimization(Rinsert)

∗Rinsert ∗ (Tdict + Tmaintenance) (3)

optimization(x) =

{
1 0 <= x <= 0.5
2− 2x 0.5 < x <= 1

(4)

Setup: A dictionary structure is required to store the
inserts that occur between two select queries.

Tear down: The values from the dictionary structure
have to be included into the materialized aggregate. Algo-
rithm 1 shows the steps in detail.

B. Merge Update

The merge update (MU) strategy leverages the existence
of a delta storage in a columnar IMDB. Table IIa shows
a table consisting of a main and delta storage. Using this

Algorithm 1 Smart lazy incremental update strategy

1: procedure SLIU TEAR DOWN(mat aggregate)
2: for all rows row in the dict structure of

mat aggregate do
3: 〈update the value of the mat aggregate table

at row.key by row.value〉
4: end for
5: 〈delete dict structure〉
6: end procedure

Table II: Materialized aggregate table w/ and w/o delta

(a) Snapshot of base table after inserting three records

Facts
Main Delta

ID Date Prod Amt ID Date Prod Amt
1 1/1/2013 1 100
2 1/1/2013 1 -50
3 1/1/2013 2 30
4 1/1/2013 2 60
5 1/2/2013 1 -10

6 1/2/2013 1 20
7 1/1/2013 3 50
8 1/1/2013 3 -10

(b) Materialized aggregate table w/o delta

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 -10
1/1/2013 2 90

(c) Materialized aggregate table w/ delta

Aggregates
Date Prod SUM(Amt)

1/1/2013 1 50
1/2/2013 1 10
1/1/2013 2 90
1/1/2013 3 40

strategy, the materialized aggregate is based on the values
from the main storage (Table IIb). Values from the delta
storage, which have been inserted after a merge operation,
are aggregated on the fly and combined with the material-
ized aggregate to represent the fresh aggregate (Table IIc).
With each merge operation [13], the values from the delta
storage are aggregated and the materialized aggregate table
is updated accordingly.

The merge update strategy only creates costs when re-
questing an aggregate. However, since it has to access
the delta storage, these costs are higher compared to an
aggregate access using SLIU and therefore have to be

65

included. Equation 5 shows the costs Tselect for accessing
the aggregate, Tdelta for aggregating on the delta and the
costs to combine both results Tunion.

costsMU = Rselect ∗ (Tselect + Tdelta + Tunion) (5)

Setup: After switching, the materialized aggregate table
contains both, the records of the main and delta. Hence, the
values from the delta storage have to be subtracted from
the materialized aggregate table, so that it only contains
aggregated main storage records. Alternatively, a merge can
be performed to transfer the delta records into the main
storage.

Tear down: The values from the delta storage have to
be included into the materialized aggregate. This is done by
aggregating the delta values and using the result to update
the materialized main aggregate. Algorithm 2 explains the
process in detail.

Algorithm 2 Merge update strategy

1: procedure MU TEAR DOWN(mat aggregate)
2: base table ← 〈get the base table of mat aggregate〉
3: delta ← 〈get all rows in delta of base table〉
4: aggr delta← 〈aggregate the rows in delta

as per mat aggregate create
statement〉

5: 〈maintain mat aggregate table with aggr delta〉
6: end procedure

The introduced parameters, e.g. time for a select Tselect

and time to maintain the aggregate Tmaintenance depend on
the underlying hardware. The calibrator introduced in [14]
helps to determine these values.

V. SWITCHING BETWEEN AGGREGATE
MAINTENANCE STRATEGIES

Workloads show different performances in terms of their
total execution time under various strategies. This section
introduces a mechanism to determine the current charac-
teristics of a workload and the possibility to switch the
strategy according to the determined characteristics. The
main idea is to monitor a workload and switch to a different
strategy if the current workload would perform better under
that strategy. Using the cost models that were introduced in
Section IV for SLIU and MU, we show an effective way
to determine adequate switching points based on changing
workload characteristics.

As described in Section III, the main influence factor is the
insert ratio. Since the insert ratio changes over time, we need
a way to determine the current insert ratio. One possibility
is to track the last n queries. The size of n determines the
accuracy of the current insert ratio. An n of 100 provides us
with an accuracy of 1 percent. The bigger the value, the more

accurate the insert ratio. However, a bigger n means a bigger
interval until the next possible strategy switch. Second, the
size of the delta storage influence the decision for an optimal
strategy. This value can be retrieved from the database.

Using these characteristics, our materialized aggregate
engine distinguish between a non-switching and a switching
strategy:

A. No Switching

This approach does not switch between different view
maintenance strategies and represents our baseline for the
benchmarks. Consequently, there are no additional costs
related to switching.

B. Switching

This approach switches to the optimal maintenance strat-
egy as soon as possible. Each time the system has de-
termined the current insert ratio, it chooses the optimal
maintenance strategy using the cost functions. In the case
that the current strategy is not the optimal strategy, the
system switches to the optimal strategy.

VI. BENCHMARKS

We implemented the concepts of the presented view main-
tenance and switching strategies in SanssouciDB [18] but
believe that the implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [7] will
lead to similar results. Figure 3 illustrates the architecture
of our implementation.

The data set we used is based on customer data which
we parametrized to generate different scenarios and patterns.
The base table size for all benchmarks is 1M records.
We have chosen this size for faster benchmark setups and
because the base table size did not influence the perfor-
mance since we incrementally maintain the aggregates. The
materialized aggregate contains about 4,000 records (i.e.
date - product combinations). The workloads consist of
two query types: selects querying aggregates filtered by
product, and inserts with about 1,000 different date - product
combinations. Three example queries are shown in Figure 4.
The workloads comprises 20k queries, subdivided into 200
phases of constant insert ratios. Between consecutive phases,
the insert ratio can stay constant or increase respectively
decrease by 10 percent.

All benchmarks have been conducted on a server featuring
8 CPUs (Intel Xeon E5450) with 3GHz and 12MB cache
each. The entire machine was comprised of 64GB of main
memory. Every benchmark in this section is run at least three
times and the displayed results are the median of all runs.

To compare the switching strategy with the no switching
approach, the latter will run twice, once using MU and once
using SLIU. Therefore, the label will not be ”no switching”,
but the name of the statically chosen maintenance strategy.

66

Client

Main Delta

Column Table Materialized
Aggregate Table

Materialized
Aggregate Engine

Materialized
Aggregate Info Maintenance Strategy

n 1

1 1

Column Store
Engine

Sanssouci DB

Figure 3: Internal architecture in Sanssouci DB

CREATE MATERIALIZED VIEW Aggregates AS
SELECT date , product , SUM (amount)
FROM Facts
GROUP BY date , product ;

INSERT INTO Facts
(id , date , product , amount)
VALUES (1 , 20130101 , 1 , 1 0 0) ;

SELECT date , product , amount
FROM Aggregates
WHERE PRODUCT = 1 ;

Figure 4: SQL queries

A. Basic Workload Patterns

Figure 5 shows a benchmark of the three workload
patterns introduced in Section III.

All three patterns cover most of the insert ratio interval
[0-1] and therefore cross the break-even point (see Figure 1).
It can be observed that switching the maintenance strategy
is always faster.

This benchmark only shows one example for each pattern.
The characteristics of the three patterns can be varied, e.g.
the amplitude of the periodic pattern can be smaller or the
difference between the two values for the hard switching
pattern can be larger. The more a workload stays on both
sides of the break-even point, the greater the advantage for
the switching strategy.

In the next benchmark, we take a deeper look into
scenarios less beneficial for switching.

B. Random Workloads

To measure the performance of the switching strategies
for unpredictable workloads, we used random walks (see
Section III-4). Thereby, we varied the interval of possible
insert ratios in the way it should influence the benefit of
switching strategies:

 0

 20

 40

 60

 80

 100

Linear Periodic Hard Switch

Ti
m

e
in

 s

Workload Pattern

Switching
Merge Strategy

Smart Lazy Incremental

Figure 5: Performance of the switching strategies for a linear,
periodic and hard switching pattern.

1) [0, 1] covers the largest possible interval. Switching
in this setup should bring the most.

2) [0.2, 0.6] covers the area close to the break even point.
The benefit of switching is expected to be lower.

3) [0.3, 0.8] covers the interval beneficial for MU. The
lower boundary crosses the break-even point slightly.

4) [0, 0.5] covers the interval beneficial for SLIU. The
upper boundary crosses the break-even point slightly.

Figure 7 includes benchmarks of the four intervals with
three workloads each. Figure 7a shows the performance
for workloads with the largest possible insert ratio interval
ranging from 0 to 1. Switching is 27 percent faster than the
fastest non-switching strategy.

The workloads, whose benchmark results are presented
in Figure 7b, have an insert ratio interval of [0.2, 0.6] (i.e.
close to the break-even point). As a result, the performance
advantage of the switching strategy is smaller. The average
improvement is approximately 18 percent.

In Figure 7c, the benchmark results for select-intensive
workloads are presented. SLIU outperforms MU. However,
its performance is beaten by the switching strategy. During
the short period with insert ratios higher than 40 percent, the
switching strategy changes the maintenance strategy to the
advantageous MU. The resulting improvement of switching
is 10 percent.

Workloads with insert ratios ranging from 0.3 to 0.8 are
good for MU. Figure 7c shows how the strategies perform
for such workloads. Again, switching has a slightly better
execution time than MU (5 percent), since the workloads
contain phases (with insert ratios smaller than 40 percent)
where SLIU is the better maintenance strategy.

67

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(a) Workload 1

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(b) Workload 2

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(c) Workload 3

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(d) Workload 4

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(e) Workload 5

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(f) Workload 6

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(g) Workload 7

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(h) Workload 8

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio
Time

(i) Workload 9

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(j) Workload 10

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(k) Workload 11

 0

 0.2

 0.4

 0.6

 0.8

 1

In
se

rt
ra

tio

Time

(l) Workload 12

Figure 6: An overview of the workloads for the benchmarks in Figure 7.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3

Ti
m

e
in

 s

Workload ID

Switching
Merge Strategy

Smart Lazy Incremental

(a) Insert ratio interval [0, 1]

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 5 6

Ti
m

e
in

 s

Workload ID

Switching
Merge Strategy

Smart Lazy Incremental

(b) Insert ratio interval [0.2, 0.6]

 0

 10

 20

 30

 40

 50

 60

 70

7 8 9

Ti
m

e
in

 s

Workload ID

Switching
Merge Strategy

Smart Lazy Incremental

(c) Insert ratio interval [0, 0.5]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10 11 12

Ti
m

e
in

 s

Workload ID

Switching
Merge Strategy

Smart Lazy Incremental

(d) Insert ratio interval [0.3, 0.8]

Figure 7: Benchmarks with different insert ratio intervals. Each workload consists of 20k queries.

68

VII. CONCLUSION

In this paper, we have motivated the importance of mate-
rialized view maintenance in columnar IMDBs for applica-
tions with mixed database workloads. Based on the fact that
the optimal materialized view maintenance strategy depends
on workload characteristics such as the ratio between reads
of the materialized view and inserts to the base table
affecting the view, we have proposed an algorithm to select
the best suitable materialized view maintenance strategy.
The switching algorithm monitors the current workload and
evaluates the cost functions to determine the potential of a
switch. Our benchmarks reveal that switching between main-
tenance strategies is beneficial for all identified workloads
as it decreases the overall execution time.

As a direction of future work, we plan to extend the
simple switching algorithm to take the workload history and
the switching costs into account. Also, we plan to employ
a machine learning approach that predicts future workload
changes and adjusts the materialized view maintenance
strategy proactively.

REFERENCES

[1] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Efficient
view maintenance at data warehouses. In SIGMOD, 1997.

[2] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical
design tuning: Workload as a Sequence. In SIGMOD, 2006.

[3] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty,
W. D. Norcott, H. Sun, A. Witkowski, and M. Ziauddin.
Materialized views in oracle. In VLDB, pages 659–664, 1998.

[4] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently
updating materialized views. In SIGMOD, pages 61–71, 1986.

[5] O. P. Buneman and E. K. Clemons. Efficiently monitoring
relational databases. ACM Transactions on Database Systems,
1979.

[6] S. Chaudhuri and V. Narasayya. Self-tuning database systems:
a decade of progress. In VLDB, 2007.

[7] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,
and W. Lehner. SAP HANA database: data management for
modern business applications. SIGMOD, 2011.

[8] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden. Hyrise: a main memory hybrid storage
engine. VLDB, pages 105–116, 2010.

[9] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data
Eng. Bull. 1995.

[10] H. Gupta. Selection of views to materialize in a data
warehouse. ICDT, 1997.

[11] H. Jain and A. Gosain. A comprehensive study of view main-
tenance approaches in data warehousing evolution. SIGSOFT
Softw. Eng. Notes 2012.

[12] A. Kemper, T. Neumann, F. F. Informatik, T. U. München,
and D-Garching. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In ICDE,
2011.

[13] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast Updates
on Read-Optimized Databases Using Multi-Core CPUs. In
VLDB, 2012.

[14] S. Müller, L. Butzmann, K. Höwelmeyer, S. Klauck, and
H. Plattner. Efficient View Maintenance for Enterprise Ap-
plications in Columnar In-Memory Databases. EDOC, 2013.

[15] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of
data cubes and summary tables in a warehouse. In SIGMOD,
1997.

[16] H. Plattner. A common database approach for oltp and olap
using an in-memory column database. In SIGMOD, pages
1–2, 2009.

[17] H. Plattner. Sanssoucidb: An in-memory database for pro-
cessing enterprise workloads. In BTW, 2011.

[18] H. Plattner and A. Zeier. In-memory data management: an
inflection point for enterprise applications. Springerverlag
Berlin Heidelberg, 2011.

[19] J. M. Smith and D. C. P. Smith. Database abstractions:
Aggregation. Commun. ACM 1977.

[20] D. Srivastava, S. Dar, H. Jagadish, and A. Levy. Answering
queries with aggregation using views. In VLDB, 1996.

[21] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig, L. Butz-
mann, D. Eickhoff, S. Klauck, D. Taschik, B. Wagner, O. Xy-
lander, A. Zeier, H. Plattner, and C. Tosun. Available-to-
promise on an in-memory column store. In BTW, pages 667–
686, 2011.

[22] J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy maintenance
of materialized views. In VLDB, pages 231–242, 2007.

[23] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom. View
maintenance in a warehousing environment. In SIGMOD,
pages 316–327, 1995.

69

