
NativeTask: A Hadoop Compatible Framework for High Performance

Dong Yang∗, Xiang Zhong∗, Dong Yan∗, Fangqin Dai∗, Xusen Yin∗,
Cheng Lian†, Zhongliang Zhu†, Weihua Jiang∗, Gansha Wu∗

∗Intel Corporation
Beijing, China

Email: {kenny.yang, xiang.zhong, dong.yan, fangqin.dai, xusen.yin, weihua.jiang, gansha.wu}@intel.com
†Email: {cheng.lian, zhongliang.zhu}@ciilabs.org

Abstract—Although Hadoop MapReduce provides good pro-
gramming abstractions and horizontal scalability, it’s often
blamed for its poor single node performance. In the meantime,
MapReduce has already achieved a large install base, thus any
performance improvement should keep the compatibility. In
this paper, we address the challenges via several approaches
guided by low-level performance analysis. And we mate-
rialize the approaches via NativeTask, a high-performance,
fully compatible MapReduce execution engine. We evaluate
its performance with representative HiBench workloads. The
results show that the speedup NativeTask achieves ranges from
10% to 160%, and it paves the way for a better MapReduce
that excels on both single node performance and scalability.
In the future, hardware acceleration can also be applied to
further improve the system’s efficiency.

Keywords-Hadoop; high performance; compatibility; CPU-
bound application; cache-oblivious sort; C++ implementation

I. INTRODUCTION

MapReduce [1][2] is a distributed programming model
for massive data processing on large clusters, and Apache
Hadoop MapReduce[3] is its most popular open source
implementation. Hadoop (we use Hadoop or MapReduce in-
terchangeably in the rest of the paper) is particularly popular
among Internet companies that possess massive amount of
data, ranging from user generated data to application logs.
For example, Baidu [4] processes about 20PB data on a daily
basis on its Hadoop clusters, which consists of more than
20,000 nodes. The largest cluster consists of nearly 4000
nodes.

As the demand for big data processing continues to grow,
the scale of Hadoop clusters becomes larger and larger. In
order to manage large scale clusters, people strive to improve
the cluster level efficiency, and build cluster using more
powerful nodes. While much emphasis [5][6] is placed on
horizontal scalability, the inefficiency of the task engine is
left unconsidered. According to our experiments, the task
execution engine itself is still inefficient on modern hardware
configurations.

Unfortunately the single node performance of Hadoop is
very poor. For the HiBench Wordcount workload, it takes
more than 150 seconds for one Map task to process 1GB
input data compressed with the Snappy codec. This indicates

that the throughput of single task is merely 6 MB/s, which
is far below the theoretical maximum value.

Behind the performance gap between Hadoop and the
ideal system, there lies lots of architectural and imple-
mentational issues. While the MapReduce framework ad-
dresses these issues from the perspective of task scheduling,
monitoring and management, we focus on the per task
data processing, because tasks consume most of the cluster
execution time and hardware resources.

As CPU core number, memory size and hard disk number
per node increase, many workloads change from I/O bound
to CPU bound. Compression/decompression of Hadoop
tasks incurs high CPU cost, and current implementation of
sort further suffers from cache locality. Moreover, we found
that serialization and deserialization, stream abstraction,
primitive type boxing and unboxing in Hadoop Java tasks
lead to significant object creation and buffer copying.

In this paper, we use low-level performance counters
to study the behavior of workloads running on Hadoop
clusters. We explain the reasons behind the poor perfor-
mance of Hadoop tasks. Meantime, we overcome the per-
formance issues without sacrificing compatibility, as such
the performance of existing Hadoop applications can be
boosted with zero effort. We implemented NativeTask, a
high-performance, fully compatible execution engine for
Hadoop. We also report our experiences on how NativeTask
accelerates representative benchmarks in the HiBench suite.

Our primary contributions include:
• A thorough characterization and analysis of task data

processing with bottlenecks identified;
• A modified MapReduce implementation with new de-

sign of Java-native interaction to remove identified
bottlenecks, while still maintaining compatibility; this
also opens the opportunities for hardware acceleration
in the future;

• An extensive evaluation of the implementation on a
cluster, including comparisons to a standard MapRe-
duce implementation.

The rest of this paper is organized as follows. We describe
our goals and non-goals in Section II. In Section III, we
analyze the Hadoop performance issues and describe our
approaches. In Section IV, we present the implementation

of NativeTask. In Section V we evaluate the performance
of NativeTask. Section VI surveys the related work. Finally,
Section VII concludes the paper and describes future work.

II. OUR GOALS AND NO-GOALS

Our goal is to design and implement a framework that
significantly improves Hadoop performance, especially task
execution performance. In particular, we want our frame-
work to be broadly applicable to all MapReduce applica-
tions. Three design goals lead to the following requirements.

• High performance: Our framework should be more
efficient on resource utilization on a single node.

• Compatibility: Our framework should not require any
modifications to the cluster runtime, middleware, mes-
sages, or applications.

• Robustness: Our framework should be able to fall back
to Vanilla Hadoop implementation automatically in case
that the framework fails to execute certain tasks for
several times.

Two no-goals need to be noted:
• We do not specifically optimize the framework to

support more efficient shuffle. But the shuffle phase
of a Hadoop job can be improved as a side product of
faster task engine.

• Our goal is not to optimize job or task scheduling. We
focus on task instances running on a node after the
scheduling.

III. ISSUES AND APPROACHES

Our approaches focus on improving task execution on
each node in the cluster, which further improve the whole
performance of jobs. The overall optimization process con-
sists of three main aspects: improving efficiency, keeping
compatibility and guaranteeing robustness.

A. Approach to Efficiency

We use HiBench as the target workloads and try to
analyze its performance on a node. Its configuration is as
follows: Intel(R) eight-Core E5-2680 CPU 2.70GHz, 512KB
L1, 2MB L2, 20MB LLC, 32GB RAM, Linux Fedora14,
Hadoop 1.0.3, Sun Java 1.6u31, and four Western Digital
HDD SATA 500GB. We perform profiling with YJP and
OProfile tools.

1) I/O-bound to CPU-bound: Depending on specific
Hadoop applications, computation may be bound by I/O,
memory, or CPU resources. Sufficient memory capacity is
critical for high utilization of servers in a Hadoop cluster,
because more map and reduce tasks can be carried out on
one node simultaneously.

Each map task has a memory buffer to which it writes
the output. The buffer size can be tuned by changing the
io.sort.mb property. When the content of the buffer reaches
a certain threshold size, a background thread starts to spill
the content to disk. Each time the memory buffer reaches the

0 50 100 150 200

W

o

r

d

C

o

u

n

t

T

e

r

a

S

o

r

t

Elapsed Time (seconds)

Text$Comparator.compare()

MapTask$MapOutputBuffer$Buffer.write()

FastByteComparisons$UnsafeComparer.compare()

QuickSort.sortInternal()

FileOutputStream.writeBytes()/UTF_8.updatePositions()

LineReader.readDefaultLine()/ReduceContext.nextKeyValue()

DataOutputStream.write()

MapTask$NewOutputCollector.write()

MapTask$MapOutputBuffer.collect()

DataChecksum.update()/StringTokenizer.scanToken()

Others

Figure 1. The time breakdown of map task for TeraSort and WordCount.

spill threshold, a new spill file is created. After the map task
finishes the writing of its last output record, there could be
several spill files. Before the task is finished, the spill files
are merged into a single partitioned and sorted output file.
So the higher spill frequency, the more I/O operations and
the worse job performance.

As RAM memory per node increases, more memory can
be allocated for each map or reduce task. We tune up the map
task buffer size to make sure that spill operation performs
only once. In this case, the biggest cost in the map task is
from the computation rather than I/O operations. That means
I/O bound workloads may trend to be CPU bound.

Although we decrease the spill frequency to reduce the
overhead of read and write stages, benchmarks still dont
perform efficiently. Next, we profile the process of task
execution and find that sort stage occupies most time, as
shown in Fig. 1.

2) Cache-aware to cache-oblivious: We continue iden-
tifying the cause of the long-running sort. The processors
feature a three-level cache hierarchy where the last-level
cache (LLC) is a large-capacity cache shared among all
cores. We investigate the cache behavior of Wordcount and
find that L2 and LLC cache miss rates are 79% and 64%
prospectively. Large LLC does not help on the performance.

The sort algorithm used by Hadoop is usually a two-way
recursive algorithm such as Quick Sort or Merge Sort. [4],
[7] investigate the cache effect on sorting algorithms both
experimentally and analytically. Because Hadoop workloads
operate on massive data sets and launch a large number of

concurrent tasks, both the data sets and the per-task data are
orders of magnitude larger than the available on-chip cache
capacity. So double or triple the capacity of LLC does not
bring obvious improvement [8]. Tuning sorting buffer size
specified by io.sort.mb does not help. Large io.sort.mb leads
to high cache miss rate, while small io.sort.mb is even worse
since it increases spill cases and incurs more I/O operations.

To address the performance penalty by high cache miss
rates, we choose to restructure Hadoop sorting algorithm in
order to improve cache locality.

Suppose that α is the total number of elements, β is
the size of a cache line, and γ is the number of lines in
a cache. For two-way recursive algorithms, at every level
all α elements are processed, which means all α elements
are loaded into cache. If loading one line at a time, for
every β elements loaded into cache, there is a cache miss.
That means 1/β amortizes cache miss per element, so
O(α/β ∗ (logα)/(log 2)) is cache miss bound. While doing
an O(γ)-way Merge Sort, we try to get a cache aware sorting
algorithm with O(α/β ∗ (logα)/(log γ)) cache miss.

We get the idea from Funnel Sort [9] whose intuition is
to recursively lay out a K-way merge with smaller funnels.
But it introduces much more memory management overhead
than Quick Sort, and it also requires lots of calculations
to keep track of buffers and how full they are, so the
actual implementation of Funnel Sort often performs poorly.
Moreover, parallelized Funnel Sort is not necessary for
MapReduce because there are already multiple Hadoop tasks
running on a node.

Our approach is different from Funnel Sort which recur-
sively lays out a K-way merge. It also differs from Hadoop
which sorts the single map output buffer. Because the map
output buffer is partitioned in the map task, each partition
buffer is sorted individually. Furthermore, each partition is
divided into multiple small chunks. We sort each small
chunk by Quick Sort individually. While sorting a partition,
we merge sort all these chunks of the partition by heap sort
which is an O(α) sorting algorithm. Finally, parallel sorting
is achieved by parallel tasks on one node. In our design,
chunk is small enough so that sorting fits into cache. Even
for parallel tasks, the sorting chunk per task fits in cache.
Moreover, suppose that δ is the number of chunks in parallel
tasks on one node, γ is much larger than δ. For example,
when 16 map slots, io.sort.mb of 1GB, 1MB chunk, 64bytes
cache line, and 20MB*4 LLC are used, γ is 400K and δ is
16K. In this case, our algorithm is close to cache miss bound.

We investigate the impact of LLC capacity on the Word-
count workload. Here sorting time does not including final
heap sort. We have two data sets and two nodes. The
first data set is 200MB and the key length is 15 bytes,
the other is 600MB and the key length is 20 bytes. One
node configuration includes Intel(R) quad-Core i5-650 CPU
3.20GHz, 512KB L2, 4MB LLC, 4 GB RAM, and the
other includes Intel(R) Xeon(R) quad-Core E5-2680 CPU

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M

i

s

s

R

a

t

i

o

(

%

)

E

l

a

p

s

e

d

T

i

m

e

(

S

e

c

o

n

d

s

)

Log(RecordCount/PartitionNumber)

Input 600MB + LLC 20MB

Input 200MB + LLC 4MB

LLC

L2 cache

Figure 2. Sort time and cache miss rates with different cache sizes.

2.70GHz, 2MB L2, 20MB LLC, 64GB RAM.
As shown in Fig. 2, we find sorting time increases when

the number of records per partition becomes larger. For
20MB LLC, sorting performance declines more quickly
when the chunk size exceeds the LLC capacity. It is the
same as the case with 4MB LLC. As shown in Fig. 2, when
sorting small chunks, more cache references occur at L2
cache and less references at LLC, so the miss rate of LLC
is high. When sorting large chunks, more references are at
LLC and the miss rate of LLC becomes lower if the chunk
size is less than the LLC capacity. When the scale of data set
exceeds the LLC capacity, miss rate becomes high. Because
L2 cache is smaller than LLC, the miss rate of L2 cache
decreases earlier.

3) Java to C++: Actually Java is efficient for MapRe-
duce tasks, and Java has some runtime optimizations tech-
niques that are more difficult to realize in C or C++. For
example, it is difficult to do dynamic optimizations, such
as lock coarsening and virtual function inlining, in C++.
But there are some still optimization factors essential for
performance, and more suitable to run in a native runtime.

The first optimization is compression and decompression.
Nearly the fastest compression algorithms are written in
native code. Currently Hadoop uses JNI to call these libraries
in a bulk processing manner, but still there is significant
overhead crossing JNI boundary, especially when decom-
pression speed is fast. And for some other techniques like
lazy decompression, direct operations on compressed data
cannot fit in bulk processing.

The second is vectorization optimization. Currently
Hadoop uses JNI to leverage SIMD (i.e. SSE/AVX) op-
timizations such as CRC checksum. But it only touches
a small portion of the stack and performance speedup is
limited.

The third is the efficiency of compiler generated code. One
of our objectives is to make Hive running on MapReduce
have competitive performance as high level query execution
engines written in native code. However, when comparing
some microbenchmarks, the LLVM compiled C++ code is

TaskTracker

Child

JVM

MapTask/
ReduceTask

run

User Process
Launch

Tasktracker Node

Hadoop Streaming

Inputs Outputs

stdin stdout

TaskTracker

Child

JVM

MapTask/
ReduceTask

run

User C++ Process

Tasktracker Node

Hadoop Pipes

Inputs Outputs

Launch Launch

socket

Launch
C++ Mapper/Reducer

Figure 3. Hadoop Streaming and Pipes.

much faster than the Java JIT’ed code.
The fourth is memory copying. A lot of serialization and

deserialization result in high overhead. In order to achieve
maximum throughput, it is better to abandon serialization,
or introduce a new serialization method that can operate
directly on serialized data, avoiding object creation and
memory copying. These are hard and not user-friendly in
Java, but convenient and straightforward in native code,
using c-struct like data representation. Moreover, when
the whole data flow, from CRC checksum, decompression,
reader, mapper/reducer, writer, compression to CRC check-
sum, is in the native space, it has even better opportunity to
eliminate small memory copies. We do our best to design
the interface and the underlying processing flow to eliminate
most memory copies.

B. Approach to Compatibility

In order to keep complete compatibility, we should keep
intact the user programming interface, configuration settings,
logging pattern, monitoring tools and visualization interface.

There are two frameworks in Hadoop for multi-language
support, Hadoop Streaming and Hadoop Pipes, as illustrated
in Fig. 3. Hadoop Streaming allows users to create and
run MapReduce jobs with any executable or script as the
mapper and/or the reducer. Both the mapper and the reducer
are executables that read the input from stdin and emit the
output to stdout. Hadoop Pipes allows C++ code to use
Hadoop DFS and MapReduce. The primary approach is to
split the C++ code into a separate process that does the
application specific code. In many ways, this approach is
similar to Hadoop streaming, but using Writable serialization
to convert the types into bytes that are sent to the process
via a socket.

Following Streaming and Pipes, we choose to move some
Hadoop execution components from Java to native space.

TaskTracker

Child

JVM

Proxy MapTask/
ReduceTask

run

User C++ Process

Tasktracker Node

Approach I

Inputs Outputs

Launch

socketLaunch

C++
Mapper/Reducer
Reader/Writer
OutputCollector

Commands Status

TaskTracker

Child

JVM

MapTask/
ReduceTask

run

C++ Library

Tasktracker Node

Approach II

Inputs Outputs

Launch

JNI

Launch
C++ Outputcollector

C++ Reader/Writer
… …

Figure 4. Two kinds of Hadoop execution frameworks.

There are two different approaches on how to implement
cross-language communication. As illustrated in Fig. 4.
Approach I moves all execution components into C++ space,
including mapper, reducer, reader, writer and collector. In
this case, Hadoop task is a proxy, actual data processing
stages are all in C++ space. Approach II moves non-
user-defined components to C++, except mapper, reducer,
partitioner, combiner, reader and writer. In this case, input
data is read in from Java side, and then transferred into
C++ side by JNI. When combiner is invoked, data is also
transferred from Java to C++.

Approach II has better compatibility, but it suffers from
performance loss due to cross-language data serialization
and memory copying. One of our objectives is to build a
high performance data warehouse to support ad-hoc queries,
and it is impossible to write the native mapper/reducers for
all queries. So we design NativeTask to support both two
approaches.

NativeTask consists of two major components, Java en-
gine and native engine. Java engine is responsible for
bypassing normal Java data flow and delegating the data
processing to native side. The actual computations runs
in the native engine. Java and native engine communicate
with each other using JNI, in a synchronized and block
based batch processing way. This is different from other IPC
mechanisms used in Hadoop Streaming and Pipes. Sockets
and pipes are fast enough for data processing, but they
consume lots of CPU and introduce some issues such as
multi-thread programming and asynchronous processing.

C. Approach to Robustness

Even if NativeTask is well tested, as a new frame-
work/library, we cannot assure its reliability for all time.

In order to make NativeTask more robust, we design a
mechanism to deal with unknown exceptions. We separate
two task jars from MapReduce jar package. When deploying
the MapReduce system, we put two task jar packages in the
related path. One is the traditional Hadoop task jar and the
other is NativeTask jar. If system runs normally, TaskTracker
loads NativeTask jar and creates task process. When task
execution failures exceed a certain limit, system chooses
Hadoop task jar to run instead of NativeTask jar, and failure
information is still written into the job log. In this way, we
complete failover implicitly and enhance system robustness.

Another situation is in case jobs on NativeTask become
slower, it may take a long time to complete jobs, but users
need results in time. At this time, the framework allows users
to change to original Hadoop mode. Users can resubmit
their uncompleted jobs with a configuration option or add
an option in the client configuration file.

IV. NATIVETASK

A. Implementation of Task Delegation

We introduce a task delegation interface to bypass normal
Java data flow. At the beginning of map task and reduce task,
a delegator is used to run the task bypassing the original
logic, if it is configured in the job configuration file.

NativeTask supports Java mapper, reducer, reader and
writer, which leads to full compatibility with Hadoop ap-
plications. Key/value pairs are passed to or from native
side in batch mode. In addition to this, task delegation also
supports another kind of data flow, which involves native
mapper/reducer with native reader and writer. In this case,
native reader/writer directly reads and writes the data, which
yields better performance and flexibility. However it still
resorts to the Java code when dealing with input and output
formats for input split and output commit.

For reduce task, shuffle and merge sort are still done on
Java side. A native version of shuffle and merge will be
implemented in future.

Due to lack of object reflection in C++, it is difficult to
set mapper, reducer, combiner, reader and writer components
in the job configuration file on client side and create them
dynamically on server side. Rather than static linking by
Hadoop Pipes, NativeTask chooses a more dynamic method
which loads class libraries based structure.

NativeTask uses templates to implement an equivalent
version of instance reflection in Hadoop. Considering .so
library as class library just like .jar files, every .so library has
an entrance function to create C++ objects of the classes in
the library. The library libnativetask.so is NativeTask runtime
and also serves as a class library with some predefined
mapper, reducer, partitioner, reader and writer. The data
flow and main logic of these components are almost the
same as the original implementation. One difference is that
native implementation tends to be more compact and easy to

improve. In addition, the mapper, reducer, reader and writer
APIs are designed to make zero copy possible.

B. Implementation of Cross-language Communication
Between Java and native side, the serialized key and value

pairs are transferred in a per-block pattern rather than a per-
record one so as to decrease JNI calls overhead. The block
size ranges from 32KB to 128KB, which is smaller than L2
cache.

To minimize buffer copying, two lightweight I/O buffers,
namely read buffer and append buffer, are introduced. Java
and Hadoop I/O streams used the decorator pattern exten-
sively which introduces complex class hierarchy. But Na-
tiveTask emphasizes more on code efficiency, e.g. frequently
invoked methods are implemented with the inline mode, and
meantime we make best effort to avoid buffer copying while
supporting compression and decompression. We only use the
decorator pattern for stream I/O in the batch mode, such
as file read, write and CRC checksum. It is easier to add
compression codecs in the native code, and snappy, lz4 and
gzip have already been integrated into framework.

The JNI based batch processing is both implemented on
Java and C++ sides and we encapsulate them into two
classes, on which other components can operate, without
incurring the complexity of JNI.

C. Implementation of Memory Management
Basically, map output collector maintains a partitioned

buffer which stores key and value pairs. Mapper emits key
and value pairs, and a partition number is generated by the
partitioner. Map output collector puts key and value pairs
into partition buckets. Each partition bucket has two arrays,
memory blocks vector used by this bucket and offsets vector
which maintains the starts and offsets of key and value pairs
in memory pool.

Partition bucket has an array of memory blocks to hold
key and value pairs. If memory blocks are used up, a new
memory block is allocated from memory pool. If there is
not enough memory in memory pool, a spill operation will
be activated.

Memory pool reserves a memory space with a size of
io.sort.mb, and tracks its usage. If not actually accessed, the
memory will not be allocated in NativeTask The actual mem-
ory allocation happens only when a block is requested and
released to a bucket. Fig. 5 illustrates memory management
and data processing in the map task.

Memory blocks backed by memory pool are used by
partition bucket and designed to be CPU cache friendly.
When sorting large indirectly-addressed key and value pairs,
sorting time is dominated by RAM random reads. Memory
chunk is used to help each bucket get relatively continuous
memory.

The block size is determined by cache size and memory
usage. Usually the minimum block size equals to 32K, and
the maximum size equals to 1M.

Input
split

M
ap

Map task

Memory
buffer

Spill to disk
Partition

Traditional sort

Sort Sort Sort

Merge sort

Memory
block

Memory pool

Figure 5. Buffers of map task in NativeTask.

Job Wordcount
Compression Enabled (Snappy)
dfs.block.size 256MB

io.sort.mb 1GB
Cluster size 4

Hadoop version 1.0.3
slots Map: 3*32+1*26 = 122 Reduce: 3*16+1*13=61
CPU Intel(R) Xeon(R) 8-Core E5-2680 2.70GHz

L1 cache 512KB
L2 cache 2048KB

LLC (L3 cache) 20MB
Memory 64GB, 3 DDR3 channels

Disk 7 SATA 500GB

Table I
CLUSTER AND JOB CONFIGURATION

The efficiency decreases when the partition number and
key/value sizes become large. In cases that the ratio of
io.sort.mb to the partition number is too small, we can use
memory pool directly with memory blocks disabled.

V. EVALUATION

We have conducted extensive evaluation on the Native-
Task framework. We evaluated 9 representative applications
in HiBench. The results show that NativeTask performs more
efficiently than the vanilla MapReduce. We also analyzed
several factors that may affect job performance, including
differences between CPU bound and I/O bound workloads,
relationship between task and job speedup, and the efficiency
of sorting optimization and trade-offs between partial Na-
tiveTask and full NativeTask.

A. CPU-bound and IO-bound Workloads

[10] conducted experiments with various HiBench bench-
marks. Fig. 6 and Fig. 7 show the speedup for CPU bound
and I/O bound workloads respectively.

Wordcount counts the number of words in an 1TB data
file created by Randomtextwriter. The output file size of
Wordcount is very small because the final results are ag-
gregated by words as keys. That is, the ratio of map/reduce
output file size to the initial input size is very small, so
I/O operations are negligible. Pagerank is a link analysis
algorithm. Its map is CPU bound and reduce is I/O bound.
The number of pages is 500M and total input size is
481GB if uncompressed. NativeTask achieves about 50%

0

2000

4000

6000

8000

10000

12000

14000

Wordcount Pagerank HiveJoin

E

l

a

p

s

e

d

T

i

m

e

(

s

e

c

o

n

d

s

)

Hadoop

NativeTask

Figure 6. HiBench workloads (CPU bound).

improvements for both workloads, as measured by the job
performance.

Both Hive Join and Aggregation queries are adapted from
the query examples in Pavlo et.al [11] and their inputs are
defined in [11]. They are intended to model complex analytic
queries over structured tables. Hive Aggregation computes
the sum of each group over a single read-only table, while
Hive Join computes both the average and sum for each group
by joining two different tables. Hive Join is CPU bound. For
Hive Aggregation, its map phase is CPU bound and reduce
phase is I/O bound. We use 5GB user visits log and 860GB
page as input data. Because most of computational logics
are implemented in Hive codes, NativeTask speedup ranges
from 10% to 30%.

Generally speaking, for I/O bound workloads, the per-
formance improvement of NativeTask is smaller. TeraSort
is a standard MapReduce benchmark, which samples the
input data and uses map/reduce to sort the data into a
total order. This algorithm generates the sample keys by
sampling the input before the job is submitted and then
writes the list of keys into HDFS. For TeraSort, map is
CPU bound and reduce is I/O bound. Compared with the
110 minutes running time on MapReduce, NativeTask only
takes 70 minutes to sort 1TB data. The Sort benchmark sorts
the data in ascending order. NativeTask is 10% faster. DFSIO
is a test on Hadoop I/O performance and throughput. DFSIO
writes 1TB data and also reads 1TB data. NativeTask’s
improvement is also around 10%. K-Means is a simple but
well known algorithm for grouping objects, a.k.a. clustering.
Here all objects need to be represented as a set of numerical
features. In addition the user has to specify the number of
groups he wishes to cluster into. For K-Means, Iteration
stage is CPU bound and classification stage is I/O bound.
After the 380GB input data is generated from logs, it is
classified in five groups. For this workload, NativeTask is
17% faster.

0

1000

2000

3000

4000

5000

6000

7000

8000

E

l

a

p

s

e

d

T

i

m

e

(

s

e

c

o

n

d

s

)

Hadoop

NativeTask

Figure 7. HiBench workloads (I/O bound).

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

I

m

p

r

o

v

e

m

e

n

t

P

e

r

c

e

n

t

a

g

e

Map Task

Job

Figure 8. Improvement factor of job and map for HiBench Workloads.

B. Relationship between Task and Job Improvement

In Fig. 8, we compare the NativeTask speedups between
job and map tasks for HiBench workloads. For Wordcount,
DFSIO-Write and K-Means, the speedup of map task almost
equals to that of job, because the data handled by reduce
task is very little or jobs are map-only. But for K-Means,
classification in the reduce task takes more time so that
NativeTask’s speedup is not so significant. For other work-
loads, map improvements are higher than job improvements,
because these jobs have heavy duty reduce tasks in addition
to map tasks. For PageRank and TeraSort, map tasks cost
lots of CPU cycles, so the map optimization improves the
performance dramatically.

C. Efficiency of Sorting Optimization

As shown in Fig. 9, the task execution time of WordCount
exceeds 150 seconds and the LLC miss rate is 64%. We
profiled the task execution cycles and found the sorting
stage costs more than 60%. Using cache-oblivious sorting
method and NativeTask optimization framework, we reduce
task execution time to about 1 minute and achieve a much
lower LLC miss rate of 19%.

0

20

40

60

80

100

120

140

160

180

200

Hadoop NT

E

l

a

p

s

e

d

T

i

m

e

(

s

e

c

o

n

d

s

)

Others

ReduceContext.nextKeyValue()/

java::nio::Bits::copyToByteArray()

QuickSort.sortInternal()/

java::nio::Bits::copyFromByteArray()

UnsafeComparer.compare()/

ReduceContext.nextKeyValue()

MapTask$MapOutputBuffer$Buffer.write()/

NativeTask::MemoryBufferedKVIterator::next()

Text$Comparator.compare()/

examples::WordCount$TokenizerMapper:map()

0 0.2 0.4 0.6 0.8 1

Hadoop

NT

LLC Miss Rate

Figure 9. Improvement factor of cache-oblivious sorting for WordCount.

0

200

400

600

800

1000

1200

job map task

E

l

a

p

s

e

d

T

i

m

e

(

s

e

c

o

n

d

s

)

Hadoop

NativeTask

FullNativeTask

Figure 10. Wordcount performance on NativeTask and FullNativeTask.

D. Full and Patial NativeTask

As mentioned above, we implemented the compatible
NativeTask and full NativeTask. For the latter case, all
task execution components are implemented in C++, so it
achieves highest performance at the cost of compatibility.
Compared with compatible NativeTask, full NativeTask gets
2x more speedup, as shown in Fig. 10. Users can choose
compatibility mode or high performance mode per their
requirements.

VI. RELATED WORK

There are some research efforts to enhance the MapRe-
duce framework. In [12][11], the authors compared MapRe-
duce with a traditional parallel database. The authors also
speculated about possible architectural causes for the perfor-
mance gap between the two systems. For example, record
parsing is recognized to bring about performance overhead.
[13] suggests MapReduce users to avoid using text format
and prefer ProtocolBuffer for encoding and decoding binary
structured records. [14] is similar to our unsorted data
flows, but we build these on the native side and get higher
efficiency. [15] tries to dynamically adjust job configurations
rather than optimizing data processing logic.

[16] in 2011 figures out four factors that affect the
performance of data processing, namely I/O mode, indexing,

parsing and sorting. Our work is different in the following
aspects. First, it suggests that direct I/O and streaming I/O
are helpful. However, due to the lightweight compression
and decompression, CPU is the bottleneck in real world
clusters. Second, it is reasonable to save I/O bandwidth via
indexing technology. Third, decoding and encoding code in
Java is not optimal, some serialization and memory copying
operations can be avoided by reconstructing the data flow.
Fourth, their work adopts a fingerprint comparison strategy
to reduce the cost of comparing two keys that have different
fingerprints. But fingerprinting doesn’t always differentiate
two keys effectively. Partition based sorting outperforms
fingerprint comparison based sorting because of smaller
computational complexity and lower cache miss rate.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the characterizations and bot-
tlenecks of MapReduce based on its open source imple-
mentation, Hadoop. We figured out three factors that affect
the performance of MapReduce tasks, especially the map
tasks. We investigated a variety of optimization strategies for
each factor. The main insight we achieved is that resource
utilization of the whole cluster can be improved significantly
by optimizing the task engine.

We also discussed our experiences in designing and
implementing NativeTask. As an open source C++ data
processing engine, it is completely compatible with Hadoop
and supports existing MapReduce applications without any
modification. Finally, we evaluated the performance of
NativeTask. The experimental results show that HiBench
workloads can be improved by a factor of 10% to 160%.

In the future, we intend to extend our research in three
areas. First, we will continue improving NativeTask for
higher efficiency, such as native shuffle, reduce merge and
so on. Second, we hope to integrate NativeTask with upper
level data warehouses such as Hive or Tez for optimizing
the whole infrastructure. Third, we want to run NativeTask
with hardware accelerators and heterogeneous computing
environments such as Xeon Phi, in order to explore more
optimization possibilities of the framework.

We acknowledge the feedbacks from the reviewers.
Binglin Chang from VMWare also has significant contri-
butions to NativeTask.

REFERENCES

[1] J. A. Stuart and J. D. Owens, “Multi-gpu mapreduce on
gpu clusters,” in Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, ser. IPDPS
’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1068–1079.

[2] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a
warehousing solution over a map-reduce framework,” Proc.
VLDB Endow., vol. 2, no. 2, pp. 1626–1629, Aug. 2009.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz, “Hadoopdb: An architectural hybrid of
mapreduce and dbms technologies for analytical workloads,”
PVLDB, vol. 2, no. 1, pp. 922–933, 2009.

[4] A. LaMarca and R. E. Ladner, “The influence of caches on
the performance of sorting,” in proceedings of the seventh
annual ACM-SIAM symposium on discrete algorithms, 1997,
pp. 370–379.

[5] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong, “Tenzing a sql imple-
mentation on the mapreduce framework,” in Proceedings of
VLDB, 2011, pp. 1318–1327.

[6] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou, “Scope: easy and efficient parallel
processing of massive data sets,” PVLDB, vol. 1, no. 2, pp.
1265–1276, 2008.

[7] A. Maus, “Sorting by generating the sorting partition, and
the effect of caching on sorting,” in NIK’2000. Norwegian
Informatics conference (ISBN 82-7314-308-2), 2000, pp. 19–
30.

[8] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[9] G. S. Brodal, R. Fagerberg, and K. Vinther, “Engineering a
cache-oblivious sorting algorithm,” 2006.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The hibench benchmark suite: Characterization of the
mapreduce-based data analysis,” in Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference
on, 2010, pp. 41–51.

[11] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paul-
son, A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss:
friends or foes?” Commun. ACM, vol. 53, no. 1, pp. 64–71,
Jan. 2010.

[12] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker, “A comparison of approaches
to large-scale data analysis,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data,
ser. SIGMOD ’09. New York, NY, USA: ACM, 2009, pp.
165–178.

[13] J. Dean and S. Ghemawat, “Mapreduce: a flexible data
processing tool,” Commun. ACM, vol. 53, no. 1, pp. 72–77,
Jan. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1629175.1629198

[14] A. Verma, B. Cho, N. Zea, I. Gupta, and R. Campbell,
“Breaking the mapreduce stage barrier,” Cluster Computing,
vol. 16, no. 1, pp. 191–206, 2013.

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: A self-tuning system for big
data analytics,” in In CIDR, 2011, pp. 261–272.

[16] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
mapreduce: an in-depth study,” Proc. VLDB Endow., vol. 3,
no. 1-2, pp. 472–483, Sep. 2010.

http://doi.acm.org/10.1145/1629175.1629198
http://doi.acm.org/10.1145/1629175.1629198

	Introduction
	Our Goals and No-Goals
	Issues and Approaches
	Approach to Efficiency
	I/O-bound to CPU-bound
	Cache-aware to cache-oblivious
	Java to C++

	Approach to Compatibility
	Approach to Robustness

	Nativetask
	Implementation of Task Delegation
	Implementation of Cross-language Communication
	Implementation of Memory Management

	Evaluation
	CPU-bound and IO-bound Workloads
	Relationship between Task and Job Improvement
	Efficiency of Sorting Optimization
	Full and Patial NativeTask

	Related Work
	Conclusion and Future Work
	References

