Background
From 1950, when the Turing test was proposed, to 2022, when ChatGPT addressed the Turing test, Artificial Intelligence (AI) has undergone decades of innovation and thriving development. Throughout this continuous evolution, numerous influential figures, concepts, events, and achievements have emerged, giving birth to numerous subfields and research topics within AI. These achievements have enriched the AI ecosystem, enabling it to process single tasks such as image classification, augment complex application scenarios like Internet services, and even achieve general intelligence comparable to human beings.
Evaluation Standards
We have identified the top AI achievements that have had significant impacts and have played a crucial role in the development of AI and related disciplines. Our evaluation criteria are as follows:
- Original or pioneering works in artificial intelligence or its subfields.
- Works that have significantly contributed to the advancement of artificial intelligence or its subfields.
- Works that are widely used or cited by industry or academia.
AI100: Top 100 AI achievements (1943-2021)
The data and figures presented here are derived from the technical report that will be released during the 2023 BenchCouncil International Federated Intelligent Computing and Chip Conferences (FICC 2023).
Overview of Top AI achievements
(Please note that the tree diagram can be zoomed in, zoomed out, and moved. You can click on the circles at the branches to expand or collapse the content of the diagram.)
Top AI Achievements
When considering the main contributors, we will only include the following in the list:
- The first author, including authors with equal contribution.
- The corresponding author, or the last author if there is no corresponding author.
If you have any comments or suggestions regarding the list, please feel free to email us at benchcouncil.evaluation@gmail.com.
Area | Work | Year | Publications | Citation |
Main Contributors |
Institution | Country |
---|---|---|---|---|---|---|---|
Theory | Turing test | 1950 | Computing machinery and intelligence | 21510 | Alan Turing | Manchester University | UK |
Complexity theory | 1971 | The Complexity of Theorem Proving Procedures | 10695 | Stephen Cook | University of Toronto | Canada | |
VC theory | 1960-1990 | The nature of statistical learning theory | 104601 | Vladimir Vapnik, Alexey Chervonenkis | Institute of Control Sciences Moscow | Russia | |
Automated theorem proving | Logic Theorist | 1956 | The logic theory machine-a complex information processing system | 1046 | Allen Newell, Herbert Simon | Carnegie Mellon University | USA |
Wang's algorithm | 1958-1961 | Proving theorems by pattern recognition I (1960) | 173 | Hao Wang | Bell Lab | USA | |
Proving theorems by pattern recognition II (1961) | 1083 | ||||||
Toward mechanical mathematics (1960) | 456 | ||||||
Davis-Putnam algorithm & DPLL | 1960 | A Computing Procedure for Quantification Theory | 4358 | Martin Davis, Hilary Putnam, Donald Loveland | Rensselaer Polytechnic Institute, Princeton University, New York University | USA | |
1961 | A machine program for theorem-proving | 4874 | |||||
Resolution method | 1965 | A machine-oriented logic based on the resolution principle | 6573 | John Robinson | Argonne Nalionrd Laboratory | USA | |
Otter | 1990s | William McCune | Argonne National Laboratory | USA | |||
Language | LISP | 1958 | Recursive functions of symbolic expressions and their computation by machin (1960) | 2491 | John McCarthy | MIT | USA |
PROLOG | 1973 | Alain Colmerauer, Robert Kowalski | University of Edinburgh | UK | |||
ChatBot | ELIZA | 1964-1967 | ELIZA-a computer program for the study of natural language communication between man and machine | 6890 | Joseph Weizenbaum | MIT | USA |
Computer power and human reason: From judgment to calculation | 5214 | ||||||
SHRDLU | 1968-1970 | Terry Winograd | MIT | USA | |||
IBM Watson | 2000 | David Ferrucci | IBM | USA | |||
Game | Christopher Strachey's Draughts | 1951 | Logical or non-mathematical programmes | 62 | Christopher Strachey | National Research Development Corporation | UK |
Chinook | 1989-2007 | Jonathan Schaeffer | University of Alberta | Canada | |||
Deep Blue | 1996 | Feng-hsiung Hsu, Murray Campbell, Arthur Hoane, Jerry Brody | IBM | USA | |||
Perception | Pandemonium | 1959 | Pandemonium: a paradigm for learning | 1611 | Oliver Selfridge | MIT | USA |
Knowlege representation | Frame | 1974 | A Framework for Representing Knowledge | 14989 | Marvin Minsky | MIT | USA |
Cyc | 1984 | CYC: Using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks | 560 | Douglas Lenat | MCC | USA | |
Expert system | Dendral | 1965 | Edward Feigenbaum, Bruce Buchanan, Joshua Lederberg, Carl Djerassi | Stanford University | USA | ||
XCON-R1 | 1978 | R1: A rule-based configurer of computer systems | 1682 | John McDermott | CMU | USA | |
Cluster, Classification, Regression | Kmeans | 1957 | Least squares quantization in PCM (1982) | 18533 | Stuart Lloyd | Bell Lab | USA |
DBSCAN | 1996 | A density-based algorithm for discovering clusters in large spatial databases with noise | 29901 | Martin Ester, Xiaowei Xu | University of Munic | Germany | |
Spectral clustering | 2000 | Normalized Cuts and Image Segmentation | 19732 | Jianbo Shi, Jitendra Malik, Andrew Ng, Yair Weiss | University of Pennsylvania, U.C. Berkeley, Hebrew University | USA, Israel | |
2001 | On spectral clustering: Analysis and an algorithm | 11945 | |||||
KNN | 1967 | Nearest neighbor pattern classification | 17605 | Thomas Cover, Peter Hart | University of Stanford, Stanford Research Institute | USA | |
Ridge | 1970 | Ridge regression: Biased estimation for nonorthogonal problems | 15332 | Arthur Hoerl, Robert Kennard | University of Delawar | USA | |
SVM | 1992 | A training algorithm for optimal margin classifiers | 63346 | Bernhard Boser, Vladimir Vapnik, Corinna Cortes | Bell Lab | USA | |
1995 | Support-vector networks | 16549 | |||||
Lasso | 1996 | Regression shrinkage and selection via the lasso | 55395 | Robert Tibshirani | University of Toronto | Canada | |
Dimension reduction , Feature extraction | SIFT | 1999 | Object recognition from local scale-invariant features | 24749 | David Lowe | University of British Columbia | Canada |
2004 | Distinctive image features from scale-invariant keypoints | 72302 | |||||
HOG | 2005 | Histograms of oriented gradients for human detection | 43894 | Navneet Dalal, Bill Triggs | INRIA | France | |
SURF | 2006 | Surf: Speeded up robust features | 36237 | Herbert Bay, Andreas Ess | ETH Zurich | Switzerland | |
Kernel PCA | 1997 | Kernel principal component analysis | 3193 | Bernhard Schölkopf, Klaus-Robert Muller | Max Planck Institute for Biological Cybernetics | Germany | |
1998 | Nonlinear component analysis as a kernel eigenvalue problem | 10615 | |||||
NMF | 1999 | Learning the parts of objects by non-negative matrix factorization | 15562 | Daniel Lee, H Sebastian Seung | Bell Lab, MIT | USA | |
2000 | Algorithms for non-negative matrix factorization | 11766 | |||||
Isomap | 2000 | A global geometric framework for nonlinear dimensionality reduction | 16447 | Joshua Tenenbaum | Stanford University | USA | |
Locally linear embedding | 2000 | Nonlinear dimensionality reduction by locally linear embedding | 18075 | Sam Roweis, Lawrence Saul | AT&T Labs, University College London | USA, UK | |
t-SNE | 2008 | Visualizing data using t-SNE | 38132 | Laurens van der Maaten, Geoffrey Hinton |
Tilburg University, University of Toronto |
Netherlands, Canada | |
Neural Network | McCulloch-Pitts neuron | 1943 |
logical calculus of the ideas immanent in nervous activity |
28581 | Warren McCulloch, Walter Pitts | University of Illinois at Chicago | USA |
SNARC | 1951 | Marvin Minsky | Princeton University | USA | |||
Rosenblatt Perceptron | 1958 | The perceptron: a probabilistic model for information storage and organization in the brain | 17938 | Frank Rosenblatt | Cornell University | USA | |
1962 | Principles of neurodynamics: Perceptrons and the theory of brain mechanisms | 9677 | |||||
Hopfield network | 1982 | Neural networks and physical systems with emergent collective computational abilities | 26481 | John Hopfield | California Institute of Technology | USA | |
1984 | Neurons with graded response have collective computational properties like those of two-state neurons | 9293 | |||||
1985 | Neural computation of decisions in optimization problems | 8723 | |||||
Self-organizing map | 1982 | Self-organized formation of topologically correct feature maps | 13313 | Teuvo Kohonen | Helsinki University of Technolog | Finland | |
DBN | 2006 | A fast learning algorithm for deep belief nets | 20213 | Geoffrey Hinton, Yee-Whye The, Ruslan Salakhutdinov | University of Toronto, National University of Singapore | Canada, Singapore | |
2006 | Reducing the dimensionality of data with neural networks | 21334 | |||||
Back-propagation | 1967 | A theory of adaptive pattern classifiers | 767 | Shun'ichi Amari, David Rumelhart, Ronald Williams | Kyushu University, UC San Diego, CMU | Japan, USA | |
1986 | Learning representations by back-propagating errors | 35330 | |||||
ReLU | 1969 | Visual feature extraction by a multilayered network of analog threshold elements | 186 | Kunihiko Fukushima, Xavier Glorot, Yoshua Bengio | NHK Broadcasting Science Research Laboratories, University of Montreal | Japan, Canada | |
2011 | Deep Sparse Rectifier Neural Networks | 11109 | |||||
Adam | 2014 | Adam: A method for stochastic optimization | 162259 | Diederik Kingma, Jimmy Ba | OpenAI, University of Toronto | USA, Canada | |
Dropout | 2014 | Dropout: a simple way to prevent neural networks from overfitting | 46447 | Nitish Srivastava, Ruslan Salakhutdinov | University of Toronto | Canada | |
Batch Normalization | 2015 | Batch normalization: Accelerating deep network training by reducing internal covariate shift | 50391 | Sergey Ioffe, Christian Szegedy | USA | ||
Neocognitron | 1980 | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position | 8344 | Kunihiko Fukushima | NHK Broadcasting Science Research Laboratories | Japan | |
LeNet | 1989 | Backpropagation Applied to Handwritten Zip Code Recognition | 15372 | Yann LeCun | Bell Labl | USA | |
1998 | Gradient-based learning applied to document recognition | 59141 | |||||
AlexNet | 2012 | Imagenet classification with deep convolutional neural networks | 142908 | Alex Krizhevsky, Geoffrey Hinton | University of Toronto | Canada | |
VGG | 2014 | Very deep convolutional networks for large-scale image recognition | 111338 | Karen Simonyan, Andrew Zisserman | University of Oxford | UK | |
GooleNet (Inception) | 2015 | Going deeper with convolutions | 54115 | Christian Szegedy, Vincent Vanhoucke | USA | ||
2016 | Rethinking the inception architecture for computer vision | 29223 | |||||
2017 | Inception-v4, inception-resnet and the impact of residual connections on learning | 15312 | |||||
ResNet | 2015 | Deep Residual Learning for Image Recognition | 188934 | Kaiming He, Jian Sun | Microsoft Research (Asia) | China | |
DenseNet | 2017 | Densely connected convolutional networks | 39133 | Gao Huang, Zhuang Liu, Kilian Weinberger |
Cornell University, Tsinghua University, Facebook AI Research |
USA, China | |
Mobilenets | 2017 | Mobilenets: Efficient convolutional neural networks for mobile vision applications | 21737 | Andrew Howard, Mark Sandler | USA | ||
2018 | Mobilenetv2: Inverted residuals and linear bottlenecks | 18118 | |||||
Squeeze-and-excitation | 2018 | Squeeze-and-excitation networks | 25132 | Jie Hu, Gang Sun | Momenta, University of Oxford | China, UK | |
R-cnn | 2014 | Rich feature hierarchies for accurate object detection and semantic segmentation | 35745 | Ross Girshick, Jitendra Malik | UC Berkeley | USA | |
Fast r-cnn | 2015 | Fast R-CNN | 30211 | Ross Girshick | Microsoft Research | USA | |
Faster r-cnn | 2015 | Faster R-CNN: Towards real-time object detection with region proposal networks | 65754 | Shaoqing Ren, Jian Sun |
Microsoft Research (Asia) |
China | |
Mask r-cnn | 2017 | Mask R-CNN | 30287 | Kaiming He, Ross Girshick | USA | ||
FPN (RetinaNet) | 2017 | Feature pyramid networks for object detection | 22063 | Tsung-Yi Lin, Serge Belongie, Piotr Dollar | Facebook, Cornell University | USA | |
2017 | Focal loss for dense object detection | 24933 | |||||
YOLO | 2016 | You only look once: Unified, real-time object detection | 40287 | Joseph Redmon, Ali Farhadi | University of Washington, Allen Institute for AI, Facebook AI Research | USA | |
2017 | YOLO9000: Better, Faster, Stronger | 18709 | |||||
2018 | Yolov3: An incremental improvement | 23635 | |||||
SSD | 2016 | Ssd: Single shot multibox detector | 33293 | Wei Liu, Alexander Berg | UNC Chapel Hill, Zoox , Google, University of Michigan | USA | |
FCN | 2015 | Fully convolutional networks for semantic segmentation | 43947 | Jonathan Long, Evan Shelhamer, Trevor Darrell | UC Berkeley | USA | |
U-net | 2015 | U-net: Convolutional networks for biomedical image segmentation | 71959 | Olaf Ronneberger, Thomas Brox | University of Freiburg | Germany | |
LSTM | 1996 | Long short-term memory | 92138 | Sepp Hochreiter, Juergen Schmidhuber | Technical University of Munich, IDSIA | Germany, Switzerland | |
Seq2Seq | 2014 | Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation | 26352 | Kyunghyun Cho, Yoshua Bengio, Ilya Sutskever, Quoc V. Le | University of Montreal,Jacobs University, University of Maine, Google | Canada, Germany, France, USA | |
2014 | Sequence to sequence learning with neural networks | 23773 | |||||
Attention | 2015 | Neural machine translation by jointly learning to align and translate | 31310 | Dzmitry Bahdanau, Yoshua Bengio, Minh-Thang Luong, Christopher Manning, Kelvin Xu | Jacobs University Bremen, University of Montreal, Stanford University, University of Toronto | Germany,Canada,USA | |
2015 | Effective approaches to attention-based neural machine translation | 9632 | |||||
2015 | Show, attend and tell: Neural image caption generation with visual attention | 11300 | |||||
Transformer | 2017 | Attention is all you need | 92865 | Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan Gomez, Lukasz Kaiser | Google, University of Toronto | USA, Canada | |
BERT | 2018 | BERT: Pre-training of deep bidirectional transformers for language understanding | 80349 | Jacob Devlin, Kristina Toutanova | USA | ||
GPT | 2018 | Improving Language Understanding by Generative Pre-Training | 6822 | Alec Radford, Ilya Sutskever, Jeffrey Wu, Dario Amodei, Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah | OpenAI | USA | |
2019 | Language models are unsupervised multitask learners | 7187 | |||||
2020 | Language models are few-shot learners | 15443 | |||||
ViT | 2020 | An image is worth 16x16 words: Transformers for image recognition at scale | 22968 | Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Neil Houlsby | USA | ||
Swin Transformer | 2021 | Swin transformer: Hierarchical vision transformer using shifted windows | 11034 | Ze Liu, Yutong Lin, Yue Cao, Han Hu | Microsoft Research Asia, University of Science and Technology of China, Xian Jiaotong University, Tsinghua University | China | |
Neural Language Model | 2000 | A Neural probabilistic language model | 10580 | Yoshua Bengio | University of Montreal | Canada | |
Word2vec | 2013 | Distributed representations of words and phrases and their compositionality | 40956 | Tomas Mikolov, Jeffrey Dean | USA | ||
2013 | Efficient estimation of word representations in vector space | 37952 | |||||
Glove | 2014 | Glove: Global vectors for word representation | 37136 | Jeffrey Pennington, Christopher Manning | Stanford University | USA | |
GAN | 2014 | Generative adversarial nets | 61187 | Ian Goodfellow, Yoshua Bengio | University of Montreal | Canada | |
Conditional GAN | 2014 | Conditional Generative adversarial nets | 11325 | Mehdi Mirza, Simon Osindero | University of Montreal, Yahoo | Canada, USA | |
DCGAN | 2015 | Unsupervised representation learning with deep convolutional generative adversarial networks | 16008 | Alec Radford, Soumith Chintala |
indico Research |
USA | |
Wassertein GAN | 2017 | Wasserstein generative adversarial networks | 14158 | Martin Arjovsky, Leon Bottou | Courant Institute of Mathematical Sciences, Facebook | USA | |
CycleGAN | 2017 | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks | 19686 | Jun-Yan Zhu, Taesung Park, Alexei Efros | UC Berkeley | USA | |
Pix2Pix | 2017 | Image-to-image translation with conditional adversarial networks | 20017 | Phillip Isola, Alexei Efros | UC Berkeley | USA | |
StyleGAN | 2019 | A Style-Based Generator Architecture for Generative Adversarial Networks | 8469 | Tero Karras, Timo Aila | NVIDIA | USA | |
2020 | Analyzing and improving the image quality of stylegan | 4523 | |||||
Variational autoencoder | 2013 | Auto-Encoding Variational Bayes | 31045 | Diederik Kingma, Max Welling | University of Amsterdam | Netherlands | |
Diffusion Model | 2015 | Deep unsupervised learning using nonequilibrium thermodynamics | 2190 | Jascha Sohl-Dickstein, Surya Ganguli, Jonathan Ho, Pieter Abbee | Stanford University, UC Berkeley | USA | |
2020 | Denoising diffusion probabilistic models | 4136 | |||||
GNN | 2005 | A new model for learning in graph domains | 1984 | Marco Gori, Franco Scarselli | University of Sienna, Hong Kong Baptist University, University of Wollongong | Italy, China, Australia | |
2008 | The graph neural network model | 6808 | |||||
GCN | 2016 | Semi-supervised classification with graph convolutional networks | 27798 | Thomas Kipf, Max Welling | University of Amsterdam | Netherlands | |
GAT | 2017 | Graph attention networks | 11901 | Petar Velickovic, Yoshua Bengio | University of Cambridge, Montreal Institute for Learning Algorithms | UK, Canada | |
NAS | 2016 | Neural architecture search with reinforcement learning | 5600 | Barret Zoph, Quoc V. Le | USA | ||
Deep compression | 2015 | Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding | 9166 | Song Han, William Dally | Stanford University,Tsinghua University, NVIDIA | USA, China | |
knowledge distillation | 2015 | Distilling the knowledge in a neural network | 16181 | Geoffrey Hinton, Oriol Vinyals, Jeff Dean | USA | ||
ImageNet | 2009 | Imagenet: A large-scale hierarchical image database | 58393 | Jia Deng, Li Fei-Fei, Olga Russakovsky | Princeton University, Stanford University, University of Michigan, MIT, UNC Chapel Hill | USA | |
2015 | Imagenet large scale visual recognition challenge | 40459 | |||||
MS COCO | 2014 | Microsoft coco: Common objects in context | 40062 | Tsung-Yi Lin, Piotr Dollar | Cornell NYC Tech, Toyota Technological Institute, Facebook, Microsoft, Brown University, California Institute of Technology, University of California at Irvine | USA | |
Reinforce learning | Temporal-difference update | 1988 | Learning to predict by the methods of temporal differences | 7556 | Richard Sutton | GTE Laboratories Incorporated | USA |
Q Learning | 1989 | Learning from delayed rewards | 9624 | Christopher Watkins, Peter Dayan | King's College, University of Edinburgh | UK | |
1992 | Q-learning | 18141 | |||||
Deep Q Network | 2013 | Playing atari with deep reinforcement learning | 13087 | Volodymyr Mnih, Martin Riedmiller, Koray Kavukcuoglu, David Silver | Google DeepMind | UK | |
2015 | Human-level control through deep reinforcement learning | 26305 | |||||
DDPG | 2015 | Continuous control with deep reinforcement learning | 13697 | Timothy Lillicrap, Jonathan Hunt, Daan Wierstra | Google DeepMind | UK | |
AlphaGo | 2016 | Mastering the game of Go with deep neural networks and tree search | 16937 | David Silver, Aja Huang, Demis Hassabis, Julian Schrittwieser, Karen Simonyan | Google DeepMind | UK, USA | |
2017 | Mastering the game of go without human knowledge | 9655 | |||||
AlphaFold | 2021 | Highly accurate protein structure prediction with AlphaFold | 15446 | John Jumper, Demis Hassabis | DeepMind | UK | |
Actor-Critic | 1983 | Neuronlike adaptive elements that can solve difficult learning control problems | 4855 | Andrew Barto, Charles Anderson | University of Massachusetts, Amherst | USA | |
A3C | 2016 | Asynchronous methods for deep reinforcement learning | 9697 | Volodymyr Mnih, Koray Kavukcuoglu | DeepMind, University of Montreal | UK, Canada | |
SARSA | 1994 | Online Q-Learning using Connectionist Systems | 2479 | Gavin Rummery, Mahesan Niranjan | University of Cambridge | UK | |
Williams's REINFORCE | 1992 | Simple statistical gradient-following algorithms for connectionist reinforcement learning | 10190 | Ronald Williams | Northeastern Universit | USA | |
Policy gradient theorem | 1999 | Policy gradient methods for reinforcement learning with function approximation | 7376 | Richard Sutton, Yishay Mansour | AT&T Labs | USA | |
Desion Tree, Ensemble learning | CART | 1984 | Classification and regression trees | 61639 | Leo Breiman, Richard olshen | UC Berkeley, Stanford University | USA |
ID3 | 1986 | Induction of decision trees | 29557 | Ross Quinlan | New South Wales Institute of Technology | Australia | |
C4.5 | 1993 | C4. 5: Programs for machine learning | 43386 | Ross Quinlan | New South Wales Institute of Technology | Australia | |
Bagging | 1996 | Bagging predictors | 34768 | Leo Breiman | UC Berkeley | USA | |
Random forests | 1995 | Random decision forests | 8450 | Tin Kam Ho, Leo Breiman | Bell Labs, UC Berkeley | USA | |
2001 | Random forests | 117057 | |||||
Boost | 1990 | The strength of weak learnability | 6850 | Robert Schapire | MIT | USA | |
Adaboost | 1997 | A decision-theoretic generalization of on-line learning and an application to boosting | 26782 | Yoav Freund, Robert Schapire | Bell Lab | USA | |
Gradient boosting | 2001 | Greedy function approximation: a gradient boosting machine | 24147 | Jerome Friedman | Stanford University | USA | |
2002 | Stochastic gradient boosting | 7595 | |||||
XGBoost | 2016 | XGBoost: A Scalable Tree Boosting System | 31647 | Tianqi Chen, Carlos Guestrin | University of Washington | USA | |
LightGBM | 2017 | Lightgbm: A highly efficient gradient boosting decision tree | 9460 | Guolin Ke, Tie-Yan Liu | Microsoft, Peking University | USA | |
Probabilistic graphical model | Bayesian network | 1982 | Reverend Bayes on inference engines: A distributed hierarchical approach | 1303 | Judea Pearl | University of California, Los Angeles | USA |
1988 | Probabilistic reasoning in intelligent systems: networks of plausible inference | 32565 | |||||
LDA | 2003 | Latent dirichlet allocation | 49298 | David Blei, Michael Jordan | UC Berkeley, Stanford University | USA | |
CRF | 2001 | Conditional random fields: Probabilistic models for segmenting and labeling sequence data | 18044 | John Lafferty, Fernando Pereira | MIT, University of Pennsylvania | USA | |
Evolutionary algorithms | Genetic Algorithm | 1975 |
Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence |
80564 | John Holland | University of Michigan, Ann Arbor | USA |
Simulated annealing | 1983 | Optimization by simulated annealing | 56687 | Scott Kirkpatrick, Mario Vecchi | IBM | USA |
Top AI Contributors
ID | Contributor | Grade | Institution | Country |
---|---|---|---|---|
1 | Yoshua Bengio | 2.78 | University of Montreal | Canada |
2 | Leo Breiman | 2.00 | UC Berkeley | USA |
3 | Marvin Minsky | 2.00 | MIT | USA |
4 | Ross Girshick | 2.00 | USA | |
5 | Ross Quinlan | 2.00 | RuleQuest Research | Australia |
6 | Geoffrey Hinton | 1.67 | University of Toronto | Canada |
7 | Richard Sutton | 1.50 | University of Alberta | Canada |
8 | Robert Schapire | 1.50 | Microsoft | USA |
9 | Kunihiko Fukushima | 1.33 | Fuzzy Logic Systems Institute | Japan |
10 | Ronald Williams | 1.33 | Northeastern University | USA |
11 | Alan Turing | 1.00 | University of Manchester | UK |
12 | Christian Szegedy | 1.00 | USA | |
13 | Christopher Strachey | 1.00 | University of Oxford | USA |
14 | David Ferrucci | 1.00 | IBM | USA |
15 | David Lowe | 1.00 | USA | |
16 | Diederik Kingma | 1.00 | USA | |
17 | Douglas Lenat | 1.00 | Cycorp | USA |
18 | Frank Rosenblatt | 1.00 | Cornell University | USA |
19 | Hao Wang | 1.00 | Rockefeller University | USA |
20 | Jerome Friedman | 1.00 | Stanford University | USA |
21 | Jian Sun | 1.00 | Microsoft Aisa | China |
22 | John Holland | 1.00 | University of Michigan | USA |
23 | John Hopfield | 1.00 | Princeton University | USA |
24 | John McCarthy | 1.00 | Stanford University | USA |
25 | John McDermott | 1.00 | CMU | USA |
26 | John Robinson | 1.00 | Syracuse University | USA |
27 | Jonathan Schaeffer | 1.00 | University of Alberta | Canada |
28 | Joseph Weizenbaum | 1.00 | MIT | USA |
29 | Joshua Tenenbaum | 1.00 | MIT | USA |
30 | Judea Pearl | 1.00 | UC Los Angeles | USA |
31 | Kaiming He | 1.00 | USA | |
32 | Max Welling | 1.00 | University of Amsterdam | Netherlands |
33 | Oliver Selfridge | 1.00 | MIT | USA |
34 | Robert Tibshirani | 1.00 | Stanford University | USA |
35 | Stephen Cook | 1.00 | University of Toronto | Canada |
36 | Stuart Lloyd | 1.00 | Bell Lab | USA |
37 | Terry Winograd | 1.00 | Stanford University | USA |
38 | Teuvo Kohonen | 1.00 | Helsinki University of Technology | Finland |
39 | William McCune | 1.00 | University of New Mexico | USA |
40 | Yann LeCun | 1.00 | New York University | USA |
41 | Alexei Efros | 0.83 | UC Berkeley | USA |
42 | Jeffrey Dean | 0.83 | USA | |
43 | Piotr Dollar | 0.83 | USA | |
44 | Ruslan Salakhutdinov | 0.83 | CMU | USA |
45 | Tsung-Yi Lin | 0.83 | NVIDIA | USA |
46 | Vladimir Vapnik | 0.83 | USA | |
47 | Jitendra Malik | 0.75 | UC Berkeley | USA |
48 | Koray Kavukcuoglu | 0.75 | USA | |
49 | Quoc V. Le | 0.75 | USA | |
50 | Volodymyr Mnih | 0.75 | USA | |
51 | Christopher Manning | 0.70 | Stanford University | USA |
52 | Demis Hassabis | 0.70 | USA | |
53 | Karen Simonyan | 0.70 | Inflection AI | UK |
54 | Alec Radford | 0.63 | OpenAI | USA |
55 | Alain Colmerauer | 0.50 | Aix-Marseille University | France |
56 | Alex Krizhevsky | 0.50 | Dessa | USA |
57 | Alexander Berg | 0.50 | University of California Irvine | USA |
58 | Alexey Chervonenkis | 0.50 | Russian Academy of Sciences | Russia |
59 | Ali Farhadi | 0.50 | University of Washington | USA |
60 | Allen Newell | 0.50 | CMU | USA |
61 | Andreas Ess | 0.50 | ETH Zurich | Switzerland |
62 | Andrew Barto | 0.50 | University of Massachusetts Amherst | USA |
63 | Andrew Howard | 0.50 | USA | |
64 | Andrew Zisserman | 0.50 | University of Oxford | UK |
65 | Arthur Hoerl | 0.50 | University of Delawar | USA |
66 | Barret Zoph | 0.50 | OpenAI | USA |
67 | Bernhard Scholkopf | 0.50 | Max Planck Institute for Intelligent Systems | Germany |
68 | Bill Triggs | 0.50 | Laboratoire Jean Kuntzmann | France |
69 | Carlos Guestrin | 0.50 | Stanford University | USA |
70 | Charles Anderson | 0.50 | Colorado State University | USA |
71 | Christopher Watkins | 0.50 | Royal Holloway | UK |
72 | Daniel Lee | 0.50 | Tisch University | USA |
73 | David Blei | 0.50 | Columbia University | USA |
74 | Fernando Pereira | 0.50 | USA | |
75 | Franco Scarselli | 0.50 | University of Siena | Italy |
76 | Gang Sun | 0.50 | Momenta | China |
77 | Gavin Rummery | 0.50 | University of Cambridge | UK |
78 | Guolin Ke | 0.50 | DP Technology | China |
79 | H Sebastian Seung | 0.50 | Princeton University | USA |
80 | Herbert Bay | 0.50 | Earkick | Switzerland |
81 | Herbert Simon | 0.50 | CMU | USA |
82 | Ian Goodfellow | 0.50 | Stanford University | USA |
83 | Jacob Devlin | 0.50 | USA | |
84 | Jeffrey Pennington | 0.50 | Stanford University | USA |
85 | Jie Hu | 0.50 | Institute of Software, Chinese Academy of Sciences | China |
86 | Jimmy Ba | 0.50 | University of Toronto | Canada |
87 | John Jumper | 0.50 | USA | |
88 | John Lafferty | 0.50 | Yale University | USA |
89 | Joseph Redmon | 0.50 | University of Washington | USA |
90 | Juergen Schmidhuber | 0.50 | Dalle Molle Institute for Artificial Intelligence Research | Switzerland |
91 | Klaus-Robert Muller | 0.50 | Max Planck Institute for Intelligent Systems | Germany |
92 | Kristina Toutanova | 0.50 | USA | |
93 | Laurens van der Maaten | 0.50 | USA | |
94 | Lawrence Saul | 0.50 | Flatiron Institute | New Zealand |
95 | Leon Bottou | 0.50 | New York University | USA |
96 | Mahesan Niranjan | 0.50 | University of Southampton | UK |
97 | Marco Gori | 0.50 | University of Siena | Italy |
98 | Mario Vecchi | 0.50 | MPV Technology | USA |
99 | Mark Sandler | 0.50 | USA | |
100 | Martin Arjovsky | 0.50 | New York University | USA |
101 | Martin Ester | 0.50 | Simon Fraser University | Canada |
102 | Mehdi Mirza | 0.50 | Canada | |
103 | Michael Jordan | 0.50 | UC Berkeley | USA |
104 | Navneet Dalal | 0.50 | Matician | USA |
105 | Nitish Srivastava | 0.50 | Apple | USA |
106 | Olaf Ronneberger | 0.50 | University of Freiburg | Germany |
107 | Petar Velickovic | 0.50 | University of Cambridge | UK |
108 | Peter Dayan | 0.50 | Max Planck Institute for Biological Cybernetics | Germany |
109 | Peter Hart | 0.50 | SRI International AI Center | USA |
110 | Phillip Isola | 0.50 | MIT | USA |
111 | Richard olshen | 0.50 | Stanford University | USA |
112 | Robert Kennard | 0.50 | University of Delawar | USA |
113 | Robert Kowalski | 0.50 | Imperial College London | UK |
114 | Sam Roweis | 0.50 | New York University | USA |
115 | Scott Kirkpatrick | 0.50 | Hebrew University | Israel |
116 | Sepp Hochreiter | 0.50 | Johannes Kepler University Linz | Austria |
117 | Sergey Ioffe | 0.50 | USA | |
118 | Shaoqing Ren | 0.50 | NIO | China |
119 | Simon Osindero | 0.50 | USA | |
120 | Song Han | 0.50 | MIT | USA |
121 | Soumith Chintala | 0.50 | Meta | USA |
122 | Tero Karras | 0.50 | NVIDIA | USA |
123 | Thomas Brox | 0.50 | University of Freiburg | Germany |
124 | Thomas Cover | 0.50 | Stanford University | USA |
125 | Thomas Kipf | 0.50 | USA | |
126 | Tianqi Chen | 0.50 | CMU | USA |
127 | Tie-Yan Liu | 0.50 | Microsoft Research AI4Science | China |
128 | Timo Aila | 0.50 | NVIDIA | Finland |
129 | Tin Kam Ho | 0.50 | IBM | USA |
130 | Tomas Mikolov | 0.50 | CIIRC CTU | The Czech Republic |
131 | Vincent Vanhoucke | 0.50 | USA | |
132 | Walter Pitts | 0.50 | MIT | USA |
133 | Warren McCulloch | 0.50 | MIT | USA |
134 | Wei Liu | 0.50 | Nuro | USA |
135 | William Dally | 0.50 | Stanford University | USA |
136 | Xiaowei Xu | 0.50 | University of Arkansas at Little Rock | USA |
137 | Yishay Mansour | 0.50 | Tel Aviv University | Israel |
138 | Yoav Freund | 0.50 | UCSD | USA |
139 | David Silver | 0.45 | UK | |
140 | Ilya Sutskever | 0.38 | OpenAI | USA |
141 | Bernhard Boser | 0.33 | UC Berkeley | USA |
142 | Corinna Cortes | 0.33 | USA | |
143 | Daan Wierstra | 0.33 | UK | |
144 | David Rumelhart | 0.33 | University of California, San Diego | USA |
145 | Donald Loveland | 0.33 | University of Michigan | USA |
146 | Evan Shelhamer | 0.33 | UK | |
147 | Gao Huang | 0.33 | Tsinghua University | China |
148 | Hilary Putnam | 0.33 | Harvard University | USA |
149 | Jia Deng | 0.33 | Princeton | USA |
150 | Jonathan Hunt | 0.33 | UK | |
151 | Jonathan Long | 0.33 | Stanford Medicine | USA |
152 | Jun-Yan Zhu | 0.33 | CMU | USA |
153 | Kilian Weinberger | 0.33 | Cornell University | USA |
154 | Li Fei-Fei | 0.33 | Stanford University | USA |
155 | Martin Davis | 0.33 | New York City | USA |
156 | Olga Russakovsky | 0.33 | Princeton | USA |
157 | Oriol Vinyals | 0.33 | USA | |
158 | Serge Belongie | 0.33 | University of Copenhagen | Denmark |
159 | Shun-ichi Amari | 0.33 | University of Tokyo | Japan |
160 | Taesung Park | 0.33 | Adobe | USA |
161 | Timothy Lillicrap | 0.33 | UK | |
162 | Trevor Darrell | 0.33 | UC Berkeley | USA |
163 | Xavier Glorot | 0.33 | UK | |
164 | Yee-Whye The | 0.33 | University of Oxford | UK |
165 | Zhuang Liu | 0.33 | Meta AI Research | USA |
166 | Andrew Ng | 0.25 | Stanford University | USA |
167 | Arthur Hoane | 0.25 | IBM | USA |
168 | Bruce Buchanan | 0.25 | University of Pittsburgh | USA |
169 | Carl Djerassi | 0.25 | University of Wisconsin-Madison | USA |
170 | Edward Feigenbaum | 0.25 | Stanford University | USA |
171 | Feng-hsiung Hsu | 0.25 | MSRA | China |
172 | Han Hu | 0.25 | MSRA | China |
173 | Jascha Sohl-Dickstein | 0.25 | USA | |
174 | Jerry Brody | 0.25 | IBM | USA |
175 | Jianbo Shi | 0.25 | University of Pennsylvania | USA |
176 | Jonathan Ho | 0.25 | UC Berkeley | USA |
177 | Joshua Lederberg | 0.25 | Yale University | USA |
178 | Kyunghyun Cho | 0.25 | New York University | USA |
179 | Martin Riedmiller | 0.25 | Germany | |
180 | Murray Campbell | 0.25 | IBM | USA |
181 | Pieter Abbee | 0.25 | UC Berkeley | USA |
182 | Surya Ganguli | 0.25 | Stanford University | USA |
183 | Yair Weiss | 0.25 | Hebrew University | Israel |
184 | Yue Cao | 0.25 | Lightyear AI | China |
185 | Yutong Lin | 0.25 | Xi'an Jiaotong University | China |
186 | Ze Liu | 0.25 | University of Science and Technology of China | China |
187 | Aja Huang | 0.20 | USA | |
188 | Dzmitry Bahdanau | 0.20 | McGill University | Canada |
189 | Julian Schrittwieser | 0.20 | USA | |
190 | Kelvin Xu | 0.20 | USA | |
191 | Minh-Thang Luong | 0.20 | USA | |
192 | Alexander Kolesnikov | 0.17 | USA | |
193 | Alexey Dosovitskiy | 0.17 | USA | |
194 | Dirk Weissenborn | 0.17 | Inceptive Inc. | USA |
195 | Lucas Beyer | 0.17 | USA | |
196 | Neil Houlsby | 0.17 | USA | |
197 | Xiaohua Zhai | 0.17 | USA | |
198 | Aidan Gomez | 0.14 | Cohere | Canada |
199 | Ashish Vaswani | 0.14 | Adept AI Labs | USA |
200 | Jakob Uszkoreit | 0.14 | Inceptive Inc. | USA |
201 | Llion Jones | 0.14 | SakanaAI | Japan |
202 | Lukasz Kaiser | 0.14 | OpenAI | USA |
203 | Niki Parmar | 0.14 | Stealth Startup | USA |
204 | Noam Shazeer | 0.14 | Character.ai | USA |
205 | Benjamin Mann | 0.13 | Anthropic | USA |
206 | Dario Amodei | 0.13 | Anthropic | USA |
207 | Jeffrey Wu | 0.13 | OpenAI | USA |
208 | Melanie Subbiah | 0.13 | Columbia University | USA |
209 | Nick Ryder | 0.13 | OpenAI | USA |
210 | Tom Brown | 0.13 | Anthropic | USA |
Top AI Institutions
Ranking | Institution | Grade | Country |
---|---|---|---|
1 | 13.50 | USA | |
2 | UC Berkeley | 7.33 | USA |
3 | MIT | 7.20 | USA |
4 | Stanford University | 6.78 | USA |
5 | University of Toronto | 6.25 | Canada |
6 | Bell Lab | 6.00 | USA |
7 | University of Montreal | 4.00 | Canada |
8 | Microsoft | 3.89 | USA |
9 | 3.31 | USA | |
10 | IBM | 3.00 | USA |
11 | CMU | 2.33 | USA |
12 | Argonne National Laboratory | 2.00 | USA |
12 | University of Amsterdam | 2.00 | Netherlands |
12 | New South Wales Institute of Technology | 2.00 | Australia |
13 | Cornell University | 1.83 | USA |
14 | Princeton University | 1.53 | USA |
15 | University of Edinburgh | 1.50 | UK |
15 | AT&T Lab | 1.50 | USA |
15 | NHK Broadcasting Science Research Laboratories | 1.50 | Japan |
15 | OpenAI | 1.50 | USA |
15 | University of Oxford | 1.50 | UK |
15 | University of Cambridge | 1.50 | UK |
16 | University of Washington | 1.33 | USA |
16 | NVIDIA | 1.33 | USA |
17 | California Institute of Technology | 1.14 | USA |
18 | Manchester University | 1.00 | UK |
18 | Institute of Control Sciences Moscow | 1.00 | Russia |
18 | National Research Development Corporation | 1.00 | UK |
18 | University of Alberta | 1.00 | Canada |
18 | MCC | 1.00 | USA |
18 | University of Munic | 1.00 | Germany |
18 | University of Delawar | 1.00 | USA |
18 | University of British Columbia | 1.00 | UK |
18 | INRIA | 1.00 | France |
18 | ETH Zurich | 1.00 | Switzerland |
18 | Max Planck Institute for Biological Cybernetics | 1.00 | Germany |
18 | University of Illinois Chicago | 1.00 | USA |
18 | Helsinki University of Technolog | 1.00 | Finland |
18 | University of Freiburg | 1.00 | Germany |
18 | GTE Laboratories Incorporated | 1.00 | USA |
18 | University of Massachusetts Amherst | 1.00 | USA |
18 | Northeastern Universit | 1.00 | USA |
18 | UC Los Angeles | 1.00 | USA |
18 | University of Michigan Ann Arbor | 1.00 | USA |
19 | Tsinghua University | 0.92 | China |
20 | University of Pennsylvania | 0.83 | USA |
21 | Stanford Research Institute | 0.50 | USA |
21 | University College London | 0.50 | UK |
21 | Tilburg University | 0.50 | Netherlands |
21 | National University of Singapore | 0.50 | Singapore |
21 | Momenta | 0.50 | China |
21 | Technical University of Munich | 0.50 | Germany |
21 | IDSIA | 0.50 | Switzerland |
21 | Jacobs University | 0.50 | Germany |
21 | Yahoo | 0.50 | USA |
21 | indico Research | 0.50 | USA |
21 | Courant Institute of Mathematical Sciences | 0.50 | USA |
21 | Montreal Institute for Learning Algorithms | 0.50 | Canada |
21 | King's College | 0.50 | UK |
21 | Peking University | 0.50 | China |
22 | UNC Chapel Hill | 0.45 | USA |
22 | University of Michigan | 0.45 | USA |
23 | Rensselaer Polytechnic Institute | 0.33 | USA |
23 | New York University | 0.33 | USA |
23 | Hebrew University | 0.33 | Israel |
23 | Kyushu University | 0.33 | Japan |
23 | UC San Diego | 0.33 | USA |
23 | Allen Institute for AI | 0.33 | USA |
23 | University of Sienna | 0.33 | Italy |
23 | Hong Kong Baptist University | 0.33 | China |
23 | University of Wollongong | 0.33 | Australia |
24 | Zoox | 0.25 | USA |
24 | University of Maine | 0.25 | USA |
24 | University of Science and Technology of China | 0.25 | China |
24 | Xian Jiaotong University | 0.25 | China |
25 | Cornell NYC Tech | 0.14 | USA |
25 | Toyota Technological Institute | 0.14 | Japan |
25 | Brown University | 0.14 | USA |
25 | UC Irvine | 0.14 | USA |
Top AI Countries
ID | Country | Grade |
---|---|---|
1 | USA | 73.1 |
2 | Canada | 12.6 |
3 | UK | 11.5 |
4 | China | 4.8 |
5 | Germany | 4.1 |
6 | Netherlands | 2.5 |
7 | Australia | 2.3 |
8 | Japan | 2.0 |
9 | Switzerland | 1.5 |
10 | France | 1.3 |
11 | Russia | 1.0 |
12 | Finland | 1.0 |
13 | Israel | 0.5 |
14 | Singapore | 0.5 |
15 | Italy | 0.3 |